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Abstract

Embedded systems are increasingly being deployed in a wide variety of applica-
tions. Most, if not all, of these applications involve an electronic controller with
discrete behaviour controlling a continuously evolving plant. Because of their
hybrid behaviour (discrete and continuous) and reactive behaviour, the formal
verification of embedded systems pose new challenges. Linear Hybrid Automata
(LHA) is a language for specifying systems with linear hybrid behaviour. Abstract
interpretation is a formal theory for approximating the semantics of programming
languages. Model checking is a technique to verify the reactive behaviour of concur-
rent systems. Computation Tree Logic (CTL) is a temporal property specification
language. Logic programming is a general purpose programming language based
on predicate logic.

In this dissertation, the LHA models are verified by encoding them as con-
straint logic programs. The constraint logic program (CLP) encoding an LHA
model is first specialised and then a concrete minimal model (or possibly an ab-
stract minimal model) for the residual program is computed. The abstract minimal
model is computed by applying the theory of abstract interpretation. The com-
puted minimal model forms the basis for verifying the LHA model. We consider
two techniques to verify the reactive properties specified as CTL formulas: (i)
reachability analysis and (ii) model checking.

A systematic translation of LHA models into constraint logic programs is de-
fined. This is mechanised by a compiler. To facilitate forward and backward
reasoning, two different ways to model an LHA are defined. A framework consist-
ing of general purpose constraint logic program tools is presented to accomplish
the reachability analysis to verify a class of safety and liveness properties. A tool
to compute the concrete minimal model is implemented. The model checking of
CTL is defined as a concrete CTL-semantic function. Since model checking of
infinite state systems, which LHAs are, does not terminate, we apply the theory of
abstract interpretation to model checking that ensures termination at the cost of
loss in precision. An abstract CTL-semantic function is constructed as an abstract
interpretation of the CTL-semantic function. This abstract CTL-semantic func-
tion is implemented using a SMT solver resulting in an abstract model checker.
We consider two abstract domains: (i) the domain of constraints and (ii) the do-
main of convex polyhedra, for both abstract model checking and abstract minimal
model computation.

We demonstrate the applicability of the proposed theory with examples taken
from the literature.
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Chapter 1

Introduction

Embedded software systems are increasingly being deployed in several safety crit-
ical applications, which include transportation, health care, power generation, and
many others. The consequences of a software bug1 in such systems can be catas-
trophic, both in terms of life and money. Hence embedded software systems have
to be rigorously analysed to make certain that they are correct.

Formal verification [120] is a well known approach for analysing the functional
and non-functional correctness of hardware and software systems based on precise
mathematical foundations employing formal languages and techniques. There ex-
ists a rich repository of formal languages and verification techniques as surveyed
in [98, 54, 111, 78, 25, 119, 104]. These formal verification techniques could be
broadly categorised, following Pnueli [103], into two classes: (i) the class of al-
gorithmic verification techniques and (ii) the class of deductive methods. Model
checking [39, 106] is a prominent member of the former class; while Theorem prov-
ing [33, 108] is a prominent member of the latter class. Recent efforts towards
synergistic integration of algorithmic and deductive techniques resulted in another
class of hybrid verification techniques [16]. In all these techniques, the correctness
of high-level models of a system is verified with respect to a particular property.

Program analysis is a static compile-time technique for predicting safe and com-
putable approximations of the set of values or behaviours possible when a program
is executed on a computer. This technique analyses the actual program itself.
Program analysis can also be applied to high-level system models by representing
them using programs in an appropriate language. Then the formal verification of
the represented model can be interpreted from the results of such program analysis.

The thesis of this dissertation is that general purpose program analyses designed
for constraint logic programs can be applied to the formal verification of high-level
specifications of embedded systems.

1An erroneous behaviour inadvertently implemented in software is called a software bug.
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Embedded Systems

Most, if not all, embedded systems are hybrid, reactive and real-time. They are
hybrid, because some of their variables are evaluated over discrete domains and
some are evaluated over continuous domains [41, 53, 5, 90]. They are reactive be-
cause they have to continuously interact with their environments and should never
terminate [92]. They are real-time because they should produce right computation
within predefined time durations. Because of such characteristics, embedded sys-
tems software is highly complicated and even more complicated is its verification.

Formal verification in essence involves two phases, namely, the specification (or
modelling) phase and the proof phase. In the specification phase, (a) the systems
are specified in an appropriate modelling language [120]; (b) the properties are
specified in an appropriate property specification language [120]. In the proof
phase, the correctness of a specified model with respect to the specified properties
is either algorithmically checked or deductively inferred.

Because of their hybrid behaviour, modelling of embedded systems requires
a formal language that supports both continuous and discrete variables. Also,
specifying their reactive properties often requires temporal logics [102] that provide
temporal operators to formalise such reactive behaviour. In this dissertation, we
focus on the high-level specification language of Linear Hybrid Automata [4] as the
modelling language and Computation Tree Logic [23] as the property specification
language.

Because of the variables that range over continuous domains, the embedded sys-
tems are infinite state systems. Consequently their verification by model checking
becomes undecidable . Undecidability can be dealt with by employing abstraction
techniques. In this dissertation, to accomplish the proof phase we apply Static
program analysis, Model checking and Abstract interpretation techniques.

A Framework for Verifying Embedded Systems

This dissertation proposes a framework to verify high-level specifications of embed-
ded systems by systematically applying static program analyses of constraint logic
programs2 and the model checking technique. Figure 1.1 outlines this framework.

This framework has three parts: (i) modelling; (ii) reachability analysis and
(iii) abstract model checking.

The modelling part (MP) of the framework applies program transformation
and specialisation techniques. This part takes in two inputs and generates one
output. One input is the model (of the system to be verified) written in a chosen
high-level language and the other is a specification of the computational model
underlying the high-level specification language. The output is a state transition

2These are programs written in the language of Constraint Logic Programming [69].
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Figure 1.1: A framework for verifying embedded systems

system equivalent of the system model. To be specific, this second input is an
interpreter for the high level specification language (in which the system is mod-
elled) written in constraint logic programming language. Consequently, the output
state transition system is a specialised version of the interpreter that was input.

The reachability analysis part (RAP) applies static analysis techniques. It
accepts the state transition system (output by MP) as its input and outputs the
reachable states. This part outputs either the set of concrete reachable states or
the set of abstract reachable states. With these sets, the correctness of a class of
safety and liveness properties could be verified.

The abstract model checking part integrates the theory of abstract interpre-
tation and the model checking technique. This part has three inputs: the state
transition system (from MP), the set of reachable states (from RAP), and a CTL
formula (specifying the property to be verified), and outputs a set of states where
the formula holds. Thus model checked are a class of CTL formulas.

In the following, we briefly explain each of the techniques employed in the
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framework.

Abstract Interpretation and Model checking

Model checking is an algorithmic technique to verify the properties of finite state
systems. We consider temporal logic model checking in particular. In this model
checking, the system to be verified is modelled as a state transition system and
the property is specified in a temporal logic language. We chose a temporal logic
language called Computation Tree Logic (CTL). Let STS be the state transition
system model of the system with set InitStates as its initial states. Let φ be
the formula written in CTL that specifies the property to be checked. Then the
model checking algorithm computes [[φ]], the set of states of STS where φ holds.
According to the theory of model checking [12], the property φ holds in STS if
InitStates ⊆ [[φ]]. When a property φ holds on STS, we write ∀s ∈ InitStates :
s, STS |= φ or STS |= φ, in short. When InitStates ∩ [[φ]] = ∅ it means φ does
not hold on STS and is written as ∀s ∈ InitStates : s, STS 2 φ (or STS 2 φ in
short).

Whenever the computation of [[φ]] becomes either expensive or impossible, we
apply the theory of abstract interpretation [26, 27] to compute a set [[φ]]a which is
a safe approximation of [[φ]] i.e. [[φ]]a is a set larger than [[φ]]. Therefore, abstract
interpretation-based model checking (AMC) is sound in refuting a property. Since,
STS 2 ¬φ =⇒ STS |= φ, abstract interpretation provides a computationally in-
expensive alternative to model checking. Particularly, AMC makes model checking
of infinite state systems feasible. However, such AMC is sound but not complete.
Meaning that not all properties provable with pure model checking can be proved
with AMC.

Abstract Interpretation and Static Analysis

Static analysis [95] is a broad term covering program analyses techniques and
methods where the behaviours of a program are approximately calculated without
actually executing the program. Though the calculated behaviours are approx-
imate, the results from static analysis are sound i.e. the static analysis results
are guaranteed to hold when the software is actually executed. Such soundness is
guaranteed because the calculations are always safe approximations of the actual
run time behaviours.

The accurate behaviours (seen at run-time) of a program, for example, could
be – what are the exact values taken by the program variables at run time, what
is the state trace of a program, etc. With static analysis calculating such accurate
behaviours might not be possible; rather we could calculate: the range of values
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possible for program variables, invariants etc. Though these calculations are ap-
proximate, we could conclude results such as that program variables never take
certain (unsafe) values.

Static analysis involves computing the possible behaviours of a program P as
a fixed point of a monotonic function, say FP (which characterises the semantics
of the program P being analysed). Since a fixed point is computed iteratively; for
some programs, fixed point computation might be expensive or impossible i.e. the
fixed point cannot be hit within a predefined (finite) amount of time or memory.

Such expensive cases can then be handled by abstract interpretation. In ab-
stract interpretation, the variables are evaluated over abstract domains. Then
again, the results from such an abstract analysis are an over approximation of the
actual possible behaviours at run time. Let set S and set S

′
be the results from

the actual static analysis and abstract interpretation -based analysis of a program
P . Then the theory of abstract interpretation guarantees that S ⊆ S

′
. Therefore,

S and S
′

being the sets of program behaviours, b /∈ S ′
=⇒ b /∈ S. Thus, such ab-

stract analyses, though approximate, are indeed helpful in concluding that certain
behaviours do not occur in the program.

However, if the abstraction is too imprecise, the set S
′

might include the for-
bidden behaviour b, which is never possible in the concrete system. Hence finding
the precise abstract domains is a challenge in abstraction-based analyses.

Program specialisation and Program transformation

Program transformation [71] is a technique of modifying a program by repeatedly
applying a set of program rewrite rules. This technique has been extensively used to
generate software from high level specifications. The transformed program should
preserve the semantics of the original program.

Program specialisation [72] is a source-to-source program transformation tech-
nique to specialise a given general purpose program for certain specific application
area. The specialised program is computationally more efficient than the original
program but has a restricted applicability.

1.1 Thesis Overview

As the proposed verification framework is based on the analysis of logic programs,
Chapter 2 introduces logic programming and the bottom-up semantics of the defi-
nite logic programs. Chapter 3 introduces reactive systems and a formal specifica-
tion language called Linear Hybrid Automata to model reactive systems. In this
chapter, also explained is a systematic procedure for translating Linear Hybrid
Automata (LHA) models into (constraint) logic programs. Chapter 4 introduces
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the property specification language of Computation Tree Logic and explains how
different classes of properties are specified in that language. Chapter 5 presents
a CLP-based approach to verify reachability properties of LHA models. Chap-
ter 6 introduces the verification technique of model checking and how it can be
integrated with the theory of abstract interpretation to verify temporal proper-
ties specified in CTL. Chapter 7 reports on the experiments. Chapter 8 gives an
account of the existing work and Chapter 9 concludes the dissertation.

1.2 Contributions

The work presented in this dissertation is partly funded by the EU-IST-FET
project Advanced Specialization and Analysis for Pervasive Computing3 (ASAP)
and Roskilde University. One of the goals [105] of the ASAP project was to develop
techniques based on high-level languages to verify and analyse pervasive systems.
Hence, as said in the thesis statement, the objective of this dissertation is to apply
general purpose constraint logic program analysis tools to verify embedded sys-
tems. My work towards this objective under the guidance of my supervisor John
P. Gallagher resulted in the following contributions:

Modelling of linear hybrid automata in CLP. A systematic translation of
Linear Hybrid Automata into constraint logic programming is defined.

CLP-based reachability properties verification of linear hybrid systems.
A technique for capturing the possibly infinite set of reachable states of an
LHA with a finite set of CLP constraints is defined. This technique applies
the static program analyses and the technique of abstract interpretation. A
tool to compute the minimal model of constraint logic programs is imple-
mented in CLP and interfaces with the Parma Polyhedra Library (PPL).
Different standard recipes for verifying reachability properties are proposed.

Abstract interpretation-based model checking of linear hybrid systems.
A standard definition of CTL-semantics function in a suitable form, using
only monotonic functions and fixed-point operators is given. Then the stan-
dard abstract interpretation framework is applied to get a precise abstraction
of the CTL-semantics function. By choosing a constraint-based abstraction
of the reachable state space, it is shown how to directly implement an ab-
stract interpretation based model checker (AMC). This model checker is also
implemented in CLP and interfaces with the PPL library and a constraint
solver, which is based on the satisfiability modulo theories (SMT)-technology.

3http://clip.dia.fi.upm.es/Projects/ASAP/
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The following conference publications reported the above mentioned contributions
and contributed to this thesis.

[1] Gourinath Banda and John P. Gallagher. Constraint-Based Abstract Seman-
tics for Temporal Logic: A Direct Approach to Design and Implementation.
In Edmund Clarke and Andrei Voronkov, chairs, 16th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning,
Dakar, Senegal April 26-30, 2010, Proceedings. (to appear)

[2] Gourinath Banda and John P. Gallagher. Constraint-Based Abstraction
of a Model Checker for Infinite State Systems. In Armin Wolf and Ulrich
Geske, chairs, 23rd Workshop on (Constraint) Logic Programming, Potsdam,
Germany September 15/16, proceedings, 2009.

[3] Gourinath Banda and J. P. Gallagher. Analysis of Linear Hybrid Systems
in CLP. In M. Hanus, editor, LOPSTR 2008, volume 5438 of Lecture Notes
in Computer Science, pages 5570. Springer, 2009.

[4] Kim S. Henriksen, Gourinath Banda and John P. Gallagher. Experiments
with a Convex Polyhedral Analysis Tool for Logic Programs. In P. Hill
and W. Vanhoof, editors, WLPE-07: Workshop on Logic-Based methods in
Programming Environments: ICLP-07 Workshop, 2007.

[5] John P. Gallagher, Kim S. Henriksen and G. Banda. Techniques for scaling
up analyses based on Pre-Interpretations. In M. Gabbrielli and G. Gupta,
editors, Proceedings of the 21st International Conference on Logic Program-
ming, ICLP’2005, volume 3668 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 280-296, 2005.
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Chapter 2

Constraint Logic Programming
and its Semantics

In this dissertation, we chose the language of constraint logic programming (CLP),
which is a subset of first order logic, to encode or represent the embedded systems
to be verified. This chapter introduces terminology and basic concepts of constraint
logic programming.

By formalising a system in first-order logic, the standard proof theory of first
order logic could be exploited in order to prove properties of the system. The set
of possible behaviours of the system can be deduced from the formal model of the
system.

Logic programming, a subset of first order logic, provides a sufficiently expres-
sive formalism for representing non-deterministic state transition systems. The se-
mantics of formal languages [6, 59, 15] (used for specifying embedded systems) can
be conveniently defined with state transition systems. Constraint logic programs
and logic programs have themselves been used as models of embedded systems by
many [94, 93, 55, 70].

CLP belongs to the class of declarative languages. In declarative programming
languages, ideally, the programmer only states what is to be computed and not
necessarily how it is to be computed. The computational engine (underlying the
declarative language) computes the solution according to a standard algorithm.
In the logic programming paradigm, logic and control are separated [79]. A logic
program specifies only the logic; while the control is implemented in the LP run-
time system.

In this dissertation, though we encode state transition systems as logic pro-
grams, these logic programs are not necessarily intended to be executed on the
LP run-time system. Rather, these programs will be subjected to static analy-
sis. For this reason, we focus only on the model-theoretic semantics of the logic
programming language.
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We first introduce pure logic programs, which contain only uninterpreted func-
tions and predicates. Since embedded systems involve actions, whose modelling
requires arithmetic and constraints, we then introduce the constraint logic pro-
gramming (CLP) language. CLP is a logic programming language extended with
constraint functions and predicates having fixed interpretations.

We choose a subset of logic programming language called Prolog (an acronym
for PROgramming in LOGic) as the representation language. Prolog is a CLP
language where constraint expressions can be embedded in the program as formulas
over terms. For instance, if X, Y are two variables (or terms), then arithmetic
relations like X = Y + 1, X > 2 ∗ Y, etc. can be treated as formulas defining the
condition that must hold on the variables X, Y . Typically, the variables appearing
in the constraints are evaluated over some fixed domain, which could be either
the domain of integer numbers, rational numbers or real numbers, or some other
user-defined domain.

Chapter Overview

The necessary logic programming terminology and the semantics of logic programs
is explained in this chapter.

- Section 2.1 introduces the first order logic.

- Section 2.2 explains how the semantics of logic programs is computed.

- Section 2.3 introduces the language of constraint logic programming.

- Section 2.4 introduces the technique of abstract interpretation and its appli-
cation to compute the approximate semantics of (constraint) logic programs.

2.1 First-order logic

Syntax

Definition 1 (Alphabet). The alphabet of a first order language consists of the
following sets of symbols:

- constants, which will be written as numerals or alphanumeric identifiers be-
ginning with lower-case letters.

- functors, which will be written as alphanumeric identifiers beginning with
lower-case letters.
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- variables, which will be written as alphanumeric identifiers beginning with
upper-case letters (sometimes subscripted and/or primed).

- propositions, which will be written as alphanumeric identifiers beginning with
lower-case letters.

- predicates, which will be written as alphanumeric identifiers beginning with
lower-case letters.

- connectives (¬, ∧, ∨, →, ↔)

- quantifiers (∀, ∃)

- auxiliary symbols like parentheses and comma.

For any alphabet, only the function and predicate symbol sets may be empty.
Every function and predicate symbol has an associated arity, which is a natural
number greater than zero indicating the number of arguments that the function
or predicate takes. If a function (resp. predicate) symbol has an arity n, then we
call it an n-ary function (resp. predicate) symbol. Sometimes we treat constants
as function symbols with 0 arity; while propositions as predicate symbols with 0
arity.

In this chapter, we use:

- Σ to denote the union of the set of function symbols and the set of constant
symbols in the alphabet.

- Π to denote the union of the set of predicate symbols and the set of propo-
sition symbols in the alphabet.

- Var to denote the set of variables in the alphabet.

For readability, we adopt the following syntactical conventions:

- Variables are denoted by upper case letters selected from the end of the
alphabet, for example X, Y, Z. Sometimes with subscripts and/or primes
like X1, Y ′.

- Constants are denoted by lower case letters selected from the beginning of
the alphabet, for example a, b, c.

- Function symbols are denoted by lower case letters selected from the letter
f and the following letters, for example f, g, h.

- Predicates are denoted by lower case letters selected from the group of letters
beginning with p and forward, for example p, q, r.
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An n-ary predicate of the form p(X1, . . . , Xn) can be referred to as p/n.

Definition 2 (Term). A term is defined inductively as follows:

- A variable is a term.

- A constant is a term.

- If f is an n-ary (n > 0) function symbol and t1, . . . , tn are n terms, then
f(t1, . . . , tn) is also a term.

Definition 3 (Formula, Atomic formula). A (well-formed) formula is defined in-
ductively as following:

- if p is an n-ary predicate symbol and t1, . . . , tn are n terms, then p(t1, . . . , tn)
is a formula (called an atomic formula or, more simply, an atom).

- if F and G are formulas, then so are ¬F , F ∧G, F ∨G, F → G and F ↔ G.

- let X be a variable and F be a formula, then ∀X F and ∃X F are also
formulas. These are called quantified formulas. A formula is said to be
closed if all the variables appearing in it are within the scope of a quantifier
for that variable. If any of the variables in a formula is not quantified then
the formula is said to be open.

In logic programming, an implication formula F → G is written as G← F .

Definition 4 (First-order language). The first order language given by an alphabet
consists of the set of all formulas constructible from the symbols of the alphabet.

In this chapter, we use:

- TermΣ to denote the set of terms over a given alphabet Σ. When Σ is obvious,
we just use Term.

- AtomΠ,Σ denotes the set of atoms constructed from Π and Term. When Σ
and Π is obvious, we just use Atom.

Definition 5 (Ground). A term or formula is said to be ground if it contains no
variables.

Definition 6 (Literal). If F is an atomic formula then the formulas F and ¬F
are called literals. The literal F is called a positive literal, while ¬F is called a
negative literal.
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Definition 7 (Clause). A clause is a formula of the form ∀X1 . . . ∀Xs(H1 ∨ . . . ∨
Hm ← B1 ∧ . . . ∧ Bn) where m ≥ 0, n ≥ 0, H1, . . . , Hm, B1, . . . , Bn are all atoms
and X1 . . . Xs are all the variables occurring in (H1 ∨ . . . ∨Hm ← B1 ∧ . . . ∧Bn).

The left hand side of the formula, H1∨ . . .∨Hm is called the head of the clause,
and the right hand side is called the body of the clause.

A clause of the form ∀X1 . . . ∀Xs(H1 ∨ . . .∨Hm ← B1 ∧ . . .∧Bn) is often denoted
H1, . . . , Hm ← B1, . . . , Bn. This notation implies that all variables are quantified
universally. The commas in the antecedent (or body) B1, . . . , Bn denote the con-
junction ‘∧’, while the commas in the consequent (head) denote the disjunction
‘∨’.

2.1.1 Definite logic programs

In what follows, a subset of first order logic is introduced. This subset and its
semantics form the basis for logic programming. Logic programming is adequate
to represent state transition systems.

Definition 8 (Horn Clause). A Horn clause is a clause with at most one positive
literal in its head.

Definition 9 (Definite program clause). A definite program clause or definite
clause is a clause with exactly one positive literal in its head. It is of the form
H ← B1, . . . , Bn.

Definition 10 (Unit clause). A unit clause is a definite program clause with an
empty body. It is of the form H ←.

In logic programming, a unit clause is called a fact. It conveys the knowledge
that is true.

Definition 11 (Definite goal). A goal is a (Horn) clause with an empty head
and a non-empty body. It is of the form ← B1, . . . , Bn where each body atom Bi

(i = 1, . . . , n) is called a subgoal of the goal.

Specifically for logic programs the following notation is adopted.

- lists are written using Prolog notation [H|T ] and [ ] where H,T are head
(element) and tail (list) of the list, respectively, and [ ] is the empty list.
Here [H|T ] stands for a special binary function cons(H,T ).

- we adopt the notion of don’t care from Prolog. A don’t care variable in Prolog
is an anonymous variable and is denoted ‘ ’. Repeated occurrences of a don’t
care variable in a context stand for distinct anonymous variables.

Definition 12 (Definite program). A definite program is a finite set of definite
program clauses.
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2.1.2 Semantics

The semantics of a first order language (FOL) is defined with respect to a partic-
ular universe. Given that particular universe, the meaning of a FOL is given by
the set of formulas that evaluate to true in that universe. Since formulas are com-
posed from terms and atomic formulas, their evaluation requires assigning meaning
to their constituent terms and formulas. The meaning of constant symbols and
function symbols is given in terms of the elements and functions in that chosen
universe.

The correspondence between the language and a chosen universe is formalised
with the following concepts.

Definition 13 (Pre-interpretation). A pre-interpretation of a first order language
L consists of the following.

1. A non-empty set D, which is the universe of discourse, called the domain of
the pre-interpretation.

2. Each constant in L is assigned an element in D.

3. Each n-ary (n > 0) function symbol in L is assigned a function mapping Dn

to D.

More informally, a pre-interpretation maps every constant symbol to an element
in the supplied domain D, and maps each function f/n to a function fJ : D1×. . .×
Dn → D. In general we denote by fJ the function assigned to function symbol f
by pre-interpretation J , and by cJ the domain element assigned to constant c.

In order to assign meaning to a compound term, we need to assign meaning
to each of its sub-terms. Sub-terms could be constants, variables and terms. To
assign a meaning to a non-ground term, we first need to allocate the variables with
values in the domain of pre-interpretation.

Definition 14 (Variable valuation). A variable valuation function V : Var → D
assigns to each variable in L an element of D.

Definition 15 (Term assignment). Let J be a pre-interpretation of the language
L with a domain D, and V be a valuation function over D. A term assignment
T VJ (t) is defined for each term t as follows:

1. T VJ (x) = V (x) for each variable x;

2. T VJ (c) = cJ for each constant c;

3. T VJ (f(t1, . . . , tn)) = fJ(T VJ (t1), . . . , T VJ (tn)), (n ≥ 0) for each term of the
form f(t1, . . . , tn).
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The concept of pre-interpretation and term assignment is illustrated with the
following example taken from [97].

Example 1. Consider a language L with Π = {even/1} and Σ = C ∪ F where:

• set of constant symbols C = {zero};

• set of function symbols F = {s/1, plus/2};

Let J be a pre-interpretation of L:

• with the set of natural numbers as the domain of pre-interpretation i.e. D =
N ;

• assigning constant zero to 0 i.e. zeroJ = 0 and

• assigning the function symbols as follows:

– (s/1)J : N → N is the function defined as sJ(x) = 1 + x (here + is the
standard addition operation over N);

– (plus/2)J : N × N → N is the function defined as plusJ(x, y) = x + y
(again + is the standard addition)

Given a valuation V = {X 7→ 0}, the term assignment for term t = plus(s(zero), X)
is computed as follows:
T VJ (t) = plusJ(T VJ (s(zero)), T VJ (X))

= sJ(T VJ (zero))) + V (X)
= sJ(zeroJ) + 0
= sJ(0) + 0 = 1 + 0 = 1

Definition 16 (Substitution). A binding Xi/ti consists of a variable Xi and a
term ti with ti 6= Xi. A substitution θ is a finite set of bindings,

θ = {X1/t1, . . . , Xn/tn}
where X1, . . . , Xn are distinct.

Just as constant and function symbols are assigned to constants and functions
in the domain of pre-interpretation, the predicate symbols of arity n are assigned
to relations of the same arity (n) over the domain of pre-interpretation.
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Definition 17 (Interpretation). An interpretation I of a first order language L
consists of:

1. a pre-interpretation J with domain D of L;

2. for each proposition symbol the assignment of true or false;

3. for each n-ary predicate symbol p ∈ Π, the assignment of a mapping Dn →
{true, false}.

We denote by pI the relation assigned to p by I.
We now introduce the notion of domain atom in order to construct a convenient

representation for interpretations.

Definition 18 (Domain atom). Let D be the domain of pre-interpretation of a
language L and let p be an n-ary predicate symbol from L i.e. p/n ∈ Π. Then
a domain atom w.r.t D is any atom p(d1, . . . , dn) where di ∈ D, i ∈ {1, . . . , n}.
The set of domain atoms of p/n over D is Atomp

D = {p(d1, . . . , dn) | p/n ∈ Π, di ∈
D, i ∈ {1, . . . , n}}.

We denote the set of all domain atoms for a language L as:
AtomD =

⋃
{Atomp

D | p/n ∈ Π} ∪ Π0 where Π0 is the set of propositions.
An interpretation of a language w.r.t. D can be represented as a subset of

AtomD. Let I be a subset of AtomD. This stands for the interpretation that
assigns to predicate p the relation pI given by:
pI = {(d1, . . . , dn) ∈ Dn | p(d1, . . . , dn) ∈ I}. If p ∈ Π0 then pI = true if p ∈ I
otherwise false.

Let I ⊆ AtomD be an interpretation, and V be a variable valuation, a truth
value is assigned to formulas as follows.

- An atom p(t1, . . . , tn) has the value true if p(T VI (t1), . . . , T VI (tn)) ∈ I other-
wise false.

- A proposition p has the value true if p ∈ I otherwise false.

- If the formula has the form ¬Q, Q ∧ R, Q ∨ R, Q → R or Q ↔ R (where
Q,R, S are atomic formulas that are assigned a truth value by I), then its
truth value is given by the following table:

Q R ¬Q Q ∧R Q ∨R Q→ R Q↔ R
true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true
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- Formulas of the form ∃X Q are true if there exists t ∈ Term such that Qθ
where θ = {X/t} is assigned the truth value true with respect to I and the
variable assignment V ; otherwise ∃X Q is false.

- Formulas of the form ∀X Q are true if for all t ∈ Term such that Qθ where
θ = {X/t} is assigned the truth value true with respect to I and the variable
assignment V ; otherwise ∀X Q is false.

Definition 19 (Domain instance). Let A be an atom of the form p(t1, . . . , tn).
Then a domain instance of A based on pre-interpretation J and variable valuation
V is the domain atom:
p(T VJ (t1), . . . , T VJ (tn)). The set of all domain instances of atom A with respect to
J (over D) and some variable assignment V is denoted by [A]J .

It is obvious that [A]J ⊆ AtomD.
The definition of domain instance extends naturally to formulas. In particular,

let C be a clause. Denote by [C]J the set of all domain instances of the clause
with respect to J .

Example 2. For the language and pre-interpretation in Example 1, the set of
domain atoms for L is
AtomD = {even(d) | d ∈ D} = {even(0), even(1), even(2), . . .}; while the domain
instance (based on the same pre-interpretation J and variable valuation V ) for
atom even(plus(X, zero)) is even(0).

Example 3. Consider the language defined in Example 1 whose interpretation is
given as I = {even(0), even(2), even(4), even(6), . . .}.

Then the truth values of the formulas even(s(s(zero))) and even(s(zero)) are
evaluated based on I as below.

First we evaluate the predicate arguments s(s(zero)) and s(zero) by applying
the term assignment T VJ as follows.

Applying J and V , T VJ (s(zero)) = 1 and T VJ (s(s(zero))) = 2.
Since even(2) ∈ I and even(1) /∈ I, even(s(s(zero))) evaluates to true; while

even(s(zero)) evaluates to false.

Example 4. In the interpretation I, from the above example (Example 3), the
compound formula even(s(s(zero))) ∧ even(s(zero)) evaluates to false.

Definition 20 (Model). A model of a formula is an interpretation in which the
formula has the value true assigned to it.

If I is a model of the formula φ, we write I |= φ.
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A model of a set S of formulas is an interpretation in which every formula is
assigned the value true. In other words, an interpretation is a model for a program
if it is a model for every formula in the program.

Definition 21 (Minimum model). A model M ⊆ AtomD of a program P is called
a minimum model if there exists no other model M ′ of P such that M ′ ⊂M .

Two formulas (or programs) are logically equivalent if they have the same set
of models.

A formula Q is a logical consequence of a set S of formulas, if Q is assigned the
value true in all models of S; this is denoted S |= Q.

A minimal model of P will be denoted M(P ) in this dissertation. M may be
super- or sub-scripted with the pre-interpretation of the model.

2.1.3 Herbrand interpretation

Given a language L, a special kind of domain can be constructed from the language
itself and a pre-interpretation of L over this domain. The interpretations arising
from such pre-interpretations are called Herbrand interpretations, which are used
in model-theoretic analysis of logic programs.

Definition 22 (Herbrand Universe and Base). The Herbrand Universe for the first
order language L with constant and function symbols Σ is TermΣ. This assumes
Σ to contain at least one constant. The Herbrand universe is denoted by TermH .

The Herbrand Base, AtomΠ,TermH
, of the language L, is the set of all domain

atoms over the Herbrand universe. We abbreviate AtomΠ,TermH
by AtomH .

Example 5. Consider the following definite program P :
even(zero).
even(s(s(X)))← even(X).
We assume here that the language of this program contains only the symbols in the
program text, namely:

• one constant symbol zero,

• one unary function symbol s and

• one unary predicate symbol even.

By the above definition, the program’s Herbrand universe and Herbrand base, re-
spectively, are as below:
TermH = {zero, s(zero), s(s(zero)), . . .}
AtomH = {even(t) | t ∈ TermH} = {even(zero), even(s(zero)), even(s(s(zero))), . . .}
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Definition 23 (Herbrand pre-interpretation). The Herbrand pre-interpretation H
for a language L is the pre-interpretation given by the following:

1. The domain of the pre-interpretation is the Herbrand universe TermH .

2. Constants in Σ are assigned to themselves i.e. cH = c.

3. For all function symbols f/n and all terms t1, . . . , tn ∈ TermH , fH applied
to t1, . . . , tn equals f(t1, . . . , tn).

Definition 24 (Herbrand interpretation and Herbrand model). Any interpreta-
tion based on the Herbrand pre-interpretation H of a language L is a Herbrand
interpretation of L.

- A Herbrand model of a definite program P in the language L is any Herbrand
interpretation of L that is also a model of P .

- A Herbrand model I ⊆ AtomH for a program P is a minimum Herbrand
model if no other I ′ ⊂ I is also a Herbrand model of P .

Example 6. Consider the program P from the previous example (Example 5).
The following are some Herbrand interpretations of P :
I0(P ) = ∅
I1(P ) = {even(zero)}
I2(P ) = {even(zero), even(s(s(zero)))}
I3(P ) = {even(zero), even(s(s(zero))), even(s(s(s(s(zero)))))}
I4(P ) = {even(s2n(zero)) | n ∈ 0, 1, 2, 3, . . .}
I5(P ) = AtomH .

Of all these interpretations, only I4 and I5 are models of program P . The other
interpretations are not models, because:

• the interpretation I0 says that the fact even(zero) is false;

• the interpretations Ij (where j ∈ {1, 2, 3}) include even(s2(j−1)(zero)) but not
even(s2j(zero)) and hence do not satisfy the second clause.

Example 7. In the above example (Example 6), both I4 and I5 (being both a
Herbrand interpretation and a model of P ) are Herbrand models of the program.
But I5 is not the minimal Herbrand model, because I5 ⊃ I4.
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The minimal Herbrand model captures the meaning of definite program P . It
can be shown that it contains exactly the ground atomic logical consequences of
the program P . In other words, ∀A ∈ AtomH : A ∈ MH(P ) ≡ P |= A. Thus the
minimal Herbrand model has a special status; if we can find any non-Herbrand
model of P in which A is false, then the above equivalence implies A /∈ MH(P ).
We will exploit this fact in using non-Herbrand models to establish that certain
atoms are not logical consequences of a program [50]. This idea of applying non-
Herbrand pre-interpretations to derive certain properties of a definite program
was introduced in [18], [17], [47] and [48]. The following example illustrates this
concept.

Example 8. Consider a non-Herbrand pre-interpretation J of the language defined
in Example 5:

• with the domain of pre-interpretation D = {e, o};

• assigning constant zero to e i.e. zeroJ = e and

• assigning the function symbols as follows:

– (s/1)J : D → D is a function defined as: sJ(o) = e and sJ(e) = o;

– plusJ : D ×D → D is a function defined as:

∗ plusJ(e, e) = e,

∗ plusJ(e, o) = o,

∗ plusJ(o, e) = o and

∗ plusJ(o, o) = e.

The set of domain atoms for L over D is AtomD = {even(e), even(o)}. The mini-
mal model (for this non-Herbrand pre-interpretation) for the program P of Example
5 is MJ(P ) = {even(e)}.

Therefore even(T JV (s(s(s(zero))))) = even(o) /∈ MJ(P ) which implies that
even(s(s(s(zero)))) /∈ MH .

The primary reason behind computing non-Herbrand models is that for some
programs the computation of a Herbrand model becomes very expensive and might
not even terminate. Thus such models based on non-Herbrand pre-interpretation
provide a safe alternative to check the absence of atoms in the Herbrand model.
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2.2 Computing the Semantics of Definite Logic

Programs

A logic program can be given interpretations based on different pre-interpretations.
This section presents a fixed-point characterisation of the minimal model with
respect to a given pre-interpretation. Such a fixed-point definition provides a
flexible semantic framework where different pre-interpretations could be plugged
in to get corresponding models. If we choose the Herbrand pre-interpretation
then it results in the standard semantics which is the minimal Herbrand model
[89]. Similarly the choice of pre-interpretation over an abstract domain gives an
abstract model. Finally the semantics of constraint logic programs (explained in
the last section) can be conveniently expressed in this framework.

2.2.1 Bottom-up semantic frameworks

The minimal model for a pre-interpretation J can be computed as the least fixed
point of the function T JP which transforms one interpretation into another. This
transformation function is called the immediate consequences operator [117]. The
immediate consequences operator with respect to J is defined as below.

Definition 25 (Core bottom-up semantics function T JP ). Let P be a definite pro-
gram, and J a pre-interpretation of the language of P over domain D. Let AtomJ

be the set of domain atoms with respect to J .

T JP : 2AtomJ → 2AtomJ

T JP (I) =

 A′

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P
A′ ← B′1, . . . , B

′
n ∈ [A← B1, . . . , Bn]J

{B′1, . . . , B′n} ⊆ I


MJ [[P ]] = lfp(T JP )

MJ [[P ]] is the minimal model of P with the pre-interpretation J . Here lfp denotes
the least fixed point. A fixed point of a function is a point that is mapped to itself
by the function. It should be noted that not every function has a fixed point;
the Knaster-Tarski theorem identifies sufficient conditions on a function to have a
least fixed point, which furthermore is the limit of the so called Kleene sequence.
These details are discussed in Chapter 6.

The least fixed point for this function is calculated by initially applying the
function to the empty interpretation (an empty set meaning that no atomic formula
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is true), and then iteratively applying it to itself until a fixed point is reached.
Algorithm 1 outlines a naive fixed-point computation algorithm.

Algorithm 1 Fix point iterations for transfer function T JP
initialise:

i = 0; I0 = ∅
repeat

Ii+1 = T JP (Ii)
i = i+ 1

until Ii = Ii−1

Example 9. Consider the pre-interpretation defined in Example 1 and the follow-
ing program:

P =

{
even(zero) ←
even(plus(X, Y )) ← even(X), even(Y )

}
Let the interpretation be I = ∅. Then T JP (I) = {even(0)}. The set of do-
main instances of [even(zero) ←]J is {even(0) ←} and of [even(plus(X, Y )) ←
even(X), even(Y )] is {(even(e))← even(e1), even(e2)) | e, e1, e2 ∈ N : e = e1 +e2}.
Applying the immediate consequences operator again: T JP (T JP (I)) = {even(0)} =
T JP (I). Thus a fixed point is reached, so the minimal model of P with respect to
the pre-interpretation J is {even(0)}.

The standard semantics will be defined next. It is based on the Herbrand
pre-interpretation.

2.2.2 Standard semantics

The standard semantics of a logic program P is given by the core bottom-up seman-
tic function with pre-interpretation J replaced with the Herbrand pre-interpretation
H. The minimal Herbrand model can be computed as the least fixed point of the
function THP , which is usually called TP [117] that transforms one Herbrand inter-
pretation into another.

2.2.3 Clark Semantics

The minimal Herbrand model consists of ground atoms. In order to capture
information about the occurrence of variables, we extend the domain of pre-
interpretation to TermΣ∪V where V = {v0, v1, v2, . . .} is a set of extra elements
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that is in one-to-one correspondence with the set of variables of the language. The
pre-interpretation HV over such an extended domain is identical to the Herbrand
pre-interpretation (of Definition 23) with TermH replaced by TermΣ∪V .

The elements of V do not occur in the program or goals, but can appear in
atoms in the minimal model MHV [[P ]]. Let C(P ) be the set of all atomic logical
consequences of the program P , known as the Clark semantics [22]; that is, C =
{A | P |= ∀A}, where A is an atom. Then MHV [[P ]] is isomorphic to C(P ). More
precisely, let Ω be some fixed bijective mapping from V to the variables in L. Let A
be an atom; denote by Ω(A) the result of replacing any constant vj in A by Ω(vj).
Then A ∈ MHV [[P ]] iff P |= ∀(Ω(A)). Using the Clark semantics as a basis, we
can construct abstractions [48, 49, 50] that capture instantiation properties such
as non-groundness. However these abstractions are not the subject of this work.

Example 10. Take a program containing a head-only variable, say P = {p(X)←
true, p(a)← true}, and given the set of extra constants V = {v0, v1, v2, . . .}, then
the concrete semantics is MHV [[P ]] = {p(a), p(v0), p(v1), . . .}.

2.3 Constraint Logic Programming

Constraint logic programming (CLP) for arithmetic domains is logic programming
extended with arithmetic operations and constraint relations. So the alphabet of
a CLP language contains the arithmetic function symbols ΣC = {+,−,×} ∪DC ,
where DC is the set of arithmetic constants, and constraint relation symbols ΠC =
{≤,≥, >,<,=}. A program in this language is called a constraint logic program.

The arithmetic function and constraint predicate symbols will be given their
usual (pre-)interpretation over a chosen numerical domain. This numerical domain
could be either the set of real numbers R or the set of rational numbers Q. The
chosen numeric domain is usually stated along with the acronym CLP i.e. for
instance CLP(R) indicates constraint logic programming where the arithmetic and
constraint symbols are interpreted over the domain of real numbers R. In general,
CLP (DC) is a constraint logic programming language parameterized by a fixed
interpretation of the additional symbols over domain DC . We restrict ourselves to
linear terms only.

Definition 26 ((Linear) arithmetic term). A linear arithmetic term (hereafter
simply called arithmetic term) t in CLP (DC) is defined by the following grammar.

t ::= k | x | k ∗ t | t1 + t2 | t1 − t2

where k ∈ DC.
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Definition 27 (Atomic linear constraint). An atomic linear arithmetic constraint
(hereafter simply called constraint) over the chosen domain is defined by the fol-
lowing grammar.

c ::= t1 ≤ t2 | t1 < t2 | t1 ≥ t2 | t1 > t2

where t1, t2 are linear arithmetic terms. The constraint t1 = t2 is an abbreviation
for t1 ≤ t2 ∧ t2 ≤ t1.

Definition 28 (Constraint logic programming language). The alphabet of a CLP
language CLP (DC) is as defined in Definition 1, except that the sets of constant,
function and predicate symbols are each divided into two disjoint parts: the con-
straint symbols and the uninterpreted symbols (referred to as user symbols). We
call the set of user function symbols ΣU and the set of user predicate symbols ΠU ,
which are disjoint from ΣC and ΠC respectively. A user atomic formula has a
predicate from ΠU and arguments from TermΣ, while a constraint atomic formula
has a predicate from ΠC and arguments from TermΣC

.

Definition 29 (Constraint logic program). A constraint logic program is a finite
set of clauses of the form:
H0 ← C1, . . . , Cm, H1, . . . , Hn (m,n ≥ 0)
where C1, . . . , Cm are constraint atomic formulas and H0, . . . , Hn are user atomic
formulas.

2.3.1 Semantics of CLP

An interpretation is defined as before, except that the symbols in ΣC and ΠC

should be interpreted consistently with their usual interpretation over DC . We first
define intended interpretation over domains that include DC , where the constraint
symbols are given their usual meanings.

Definition 30 (Arithmetic CLP interpretation). An arithmetic pre-interpretation
JC with domain D ⊇ DC assigns:

• each constant in DC to itself;

• a function D2
C → DC to each binary arithmetic function f ∈ ΣC giving the

usual arithmetic meaning to f ;

• a function Dn → D to each n-ary user function f ∈ ΣU .

Given an arithmetic pre-interpretation with domain D ⊇ DC, an arithmetic
interpretation IC assigns:
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• the standard binary relation over D2
C to each constraint predicate in ΠC;

• an n-ary relation over Dn to each user predicate in ΠU .

As before, an interpretation can be represented by a set of domain atoms. We
denote by IC the set of domain atoms giving the standard interpretations of the
constraint predicates in ΠC . For instance, given the domain DC , for the predicate
symbol≥∈ ΣC , IC contains all domain atoms of the form e1 ≥ e2 where e1, e2 ∈ DC

such that e1 is greater than or equal to e2. IC is infinite when DC is infinite.
We can then introduce arbitrary interpretations so long as they are consistent

with the arithmetic interpretation. Let J be an arbitrary pre-interpretation of a
CLP (DC) program P and let I be an interpretation based on J . Then I is a DC

safe model if (i) I is a model of P ; (ii) every true atomic constraint A, i.e. A ∈ IC ,
is also true in I.

We first present the immediate consequences function for CLP which is identical
to the T JP defined in Definition 25 except that we include the interpretation IC .

Definition 31 (Standard semantic function for CLP(DC) T JCP ). Let P be a con-
straint logic program, and JC be the pre-interpretation of the language as defined
in Definition 30. Let AtomJC be the set of domain atoms with respect to JC and
let IΠC

be a DC safe model of the constraint predicates ΠC.

T JCP : 2AtomJC → 2AtomJC

T JCP (I) =

 A′

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P
A′ ← B′1, . . . , B

′
n ∈ [A← B1, . . . , Bn]JC

{B′1, . . . , B′n} ⊆ I ∪ IΠC


MJC [[P ]] = lfp(T JCP )

Here MJC [[P ]] ∪ IΠC
is the minimal DC safe model of P w.r.t. JC.

2.3.2 Constraint-based definition of the CLP semantics

Definition 32 (Constrained atom). A constrained atom is a clause of the form
A ← c(X̄) where A is an atom containing variables X1, . . . , Xn and c(X̄) is a
linear constraint over X1, . . . , Xk (k ≤ n). It is assumed that A does not include
any constraint constants or function symbols as its arguments.

The set of all constrained atoms in the language CLP (DC) is denoted by ADC .
An example of a constrained atom is state([X ′1, X

′
2], [X1, X2]) ← X ′2 ≥ X2 ∧

X ′1 = X1 − 3× (X ′2 −X2).
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For the rest of this chapter, we assume a restricted CLP language with no user
constant and function symbols i.e. ΣU = ∅. So the previous example reformulated
in this restricted language will be:
state(X ′1, X

′
2, X1, X2)← X ′2 ≥ X2 ∧X ′1 = X1 − 3× (X ′2 −X2).

A constraint is satisfied by an assignment of numbers to its variables if the
constraint evaluates to true under this assignment, and is satisfiable if there exists
some assignment that satisfies it. A constraint can be identified with the set
of assignments that satisfy it. Thus a constraint over n variables represents a
(possibly infinite) set of n-tuples in Dn

C .

A constrained atom A ← c(X̄) stands for the set of all ground instances Aθ
where c(X̄θ) is true.

We now present the CLP semantics in terms of constrained atoms. This will
lead to an implementation taking advantage of constraint libraries. In particular,
we use Parma Polyhedra Library (PPL) [11].

Definition 33 (Concrete Semantics). The immediate consequence operator is de-
fined as:

T CP : 2ADC → 2ADC

T CP (I) =


A← C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A← B1, . . . , Bn ∈ P
{A1 ← C1, . . . , An ← Cn} ∈ I
and ∃ substitution θ such that
mgu((B1, . . . , Bn), (A1, . . . , An)) = θ
C ′ =

⋃
i=1,...,n

{Ciθ}

SAT(C ′)
C = projVar(A)(C ′)


MC[[P ]] = lfp(T CP )

In the above definition, mgu is the most general unifier of its arguments [89].
We assume its arguments are standardised apart. projX̄(C) returns the projection
of constraint C onto the set of variables X̄; SAT(C) returns true if C is satisfiable
otherwise false.

This definition will be used in the later chapter as the basis for computing the
minimal model of the constraint logic programs representing real time systems.
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2.4 Abstract interpretation

We now define basic concepts of abstract interpretation [26], whose aim is to
systematically construct approximations of the standard semantic functions. In
our case, the model of a program is usually infinite. By abstract interpretation we
can construct a finite approximation. This enables us to check program properties
that cannot be checked in the standard model. Since we compute the standard
model by fixed-point iteration, such a computation might not terminate.

We first present some basics from lattice theory and fixed-point theory.

Definition 34 (Partial order). A partial order over a set L is a binary relation
v: L× L→ {true, false} which is reflexive, transitive and anti-symmetric.

Definition 35 (Partially ordered set). A partially ordered set is a set with an
associated partial ordering. It is also called a poset and is written as 〈L,v〉. An
example of such a poset could be the set of natural numbers ordered by the ≤
relation 〈N,≤〉.

An upper bound of a subset A of poset 〈L,v〉 is an element l ∈ L such that
∀l0 ∈ A : l0 v l. The least upper bound (lub) l of A is an upper bound that for
all upper bounds l0 of A satisfies l v l0. Similarly a lower bound l ∈ L of A is an
element such that ∀l0 ∈ A : l v l0. The greatest lower bound (glb) l of A is an
element that for all lower bounds l0 of A satisfies l0 v l.

The glb of a set A is denoted
d
A and is in some contexts called the meet

operator. The lub of A is denoted
⊔
A and will sometimes be referred to as the

join operator.

Definition 36 (Complete lattice). A poset 〈L,v〉 is a complete lattice if every
subset A of L has both a greatest lower bound (glb) and a least upper bound (lub).

The least element of a complete lattice 〈L,v〉 is denoted ⊥ =
d
L and the

greatest element is denoted > =
⊔
L. The glb, lub, least element and greatest

element can be included in the tuple describing a complete lattice, namely 〈L,v
,u,t,⊥,>〉. Sometimes we abbreviate this description by 〈L,v〉.

Definition 37 (Monotonic function). Given two posets 〈L,vL〉 and 〈M,vM〉, a
function f : L→M is called monotonic if

∀l1, l2 ∈ L : l1 vL l2 ⇒ f(l1) vM f(l2)

The composition of monotonic functions is also monotonic i.e. if f : L1 → L2

and g : L2 → L3 are monotonic, then so is g ◦ f : L1 → L3.

Definition 38 (Fixed point). Let f : L→ L be a function. Then l ∈ L is a fixed
point of f , if f(l) = l and is denoted by fix(f).
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Tarski’s fixed point theorem [116] states the following:

Theorem 1. Let L be a complete lattice and f : L→ L be a monotonic function.
Then the set of fixed points, Fix(f) ⊆ L, is also a complete lattice.

Since a complete lattice cannot be empty, this guarantees the existence of at
least one fixed point of f and even the existence of a least and greatest fixed point.
The greatest lower bound of Fix(f) is denoted lfp(f), least fixed point of f . A
least upper bound of Fix(f) also exists in L and is denoted by gfp(f), greatest fix
point of f .

Definition 39 (Chain). For a partially ordered set L, a subset Y ⊆ L, is a chain
if

∀l1, l2 ∈ Y : (l1 v l2) ∨ (l2 v l1)

A sequence of elements, {ln|n ∈ N}, in L is an ascending chain if n ≤ m⇒ ln v lm
and descending chain if n ≤ m⇒ ln w lm.

Definition 40 (Ascending Chain Condition). A partially ordered set, L, satisfies
the Ascending Chain Condition if every ascending chain l1 v l2 v . . . of elements
in L is eventually stationary. The chain is stationary if there exists an n ∈ N such
that lm = ln for all m > n.

Definition 41 (Continuous functions between partially ordered sets). Let L be a
complete lattice, then a function f : L → L is continuous if for all Y ⊆ L, then⊔
f(Y ) = f(

⊔
Y ) holds.

Note that if a function is continuous it is also monotonic. Also, when the
lattice L happens to be a finite lattice a monotonic function f : L → L also is a
continuous function.

Theorem 2. For any complete lattice L and any continuous function f : L→ L
the lfp(f) is the least upper bound of the ascending Kleene chain:

⊥ v f(⊥) v f(f(⊥)) v . . .

A dual characterisation of the above theorem leads to the greatest fixed point,
where the chain descends beginning with the greatest element > and stabilising
at the greatest fixed point.

Going back to the LP semantics function T JP : 2AtomJ → 2AtomJ , the set 2AtomJ is
a complete lattice 〈2AtomJ ,⊆,∩,∪, ∅,AtomJ〉 and the function itself is a continuous
function. This guarantees the existence of the least fixed point and justifies its
computation by constructing the Kleene sequence.
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However, when the lattice does not satisfy the ascending chain condition the
Kleene sequence might not stabilise in a finite number of iterations. In such cases,
we resort to abstract interpretation.

In abstract interpretation we replace the so-called “concrete” semantic func-
tion by an abstract semantic function, developed systematically from the concrete
semantics with respect to a Galois connection. We present the formal framework
briefly.

Definition 42 (Galois Connection). 〈L,vL〉 −−−→←−−−α
γ
〈M,vM〉 is a Galois Connec-

tion between the lattices 〈L,vL〉 and 〈M,vM〉 if and only if α : L → M and
γ : M → L are monotonic and ∀l ∈ L,m ∈M,α(l) vM m↔ l vL γ(m).

In abstract interpretation, 〈L,vL〉 and 〈M,vM〉 are the concrete and abstract

semantic domains respectively. Given a Galois connection 〈L,vL〉 −−→←−−α
γ
〈M,vM〉

and a monotonic concrete semantics function f : L → L, we define an abstract
semantic function f ] : M → M such that for all m ∈ M , (α ◦ f ◦ γ)(m) vM
f ](m). Furthermore it can be shown that lfp(f) vL γ(lfp(f ])) and that gfp(f) vL
γ(gfp(f ])).

Thus the abstract function f ] can be used to compute over-approximations
of f , which can be interpreted using the γ function. The case where the abstract
semantic function is defined as f ] = (α◦f◦γ) gives the most precise approximation.

If M is a finite-height lattice, then the non-terminating fixed point computa-
tions of lfp(f) and gfp(f) over L are approximated with a terminating fixed point
computation over the finite lattice M .

2.4.1 Abstract interpretation of logic program semantics

We will now show that any pre-interpretation J induces a Galois connection
〈AtomH ,⊆〉 −−→←−−α

γ
〈AtomJ ,⊆〉. What this means is that by choosing an appro-

priate pre-interpretation over a finite domain we can derive an abstract semantic
function of a program.

We construct the α : 2AtomH → 2AtomJ and γ : 2AtomJ → 2AtomH functions of
the Galois connection using a standard construction as explained in [95] (p235).
Given a pre-interpretation J define an extraction function η : AtomH → AtomJ

defined as: η(A) = A′ where [A]J = {A′}; (since A ∈ AtomH , | [A]J |= 1). Let
I ∈ 2AtomH ; define α(I) = {η(A) | A ∈ I}. Let S ∈ 2AtomJ ; define γ(S) = {A ∈
AtomH | η(A) ∈ S}.

It can easily be seen that α and γ define a Galois connection.

α(I) ⊆ S ≡ {η(A) | A ∈ I} ⊆ S
≡ ∀A ∈ I : η(A) ∈ S
≡ I ⊆ γ(S)
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It can be proved that ∀S : T JP (S) ⊇ (α ◦THP ◦ γ)(S) and therefore γ(lfp(T JP )) ⊇
lfp(THP ).

For CLP programs we can construct abstract interpretations using pre-interpret-
ations as just explained. However, in this dissertation, we employ another class of
Galois connections for CLP programs based on the well known domain of convex
polyhedra [30, 57]. For our purposes, we use constraint representations of convex
polyhedra; an n-dimensional polyhedron is represented by a conjunction of linear
inequalities with n variables ranging over the continuous domain.

Let S be a set of points in k-dimensional space; we assume a function CH(S)
called the convex hull of S, which is the smallest convex polyhedron containing
S. This convex polyhedron in k-dimensional space can also be defined with a
linear constraint c over k variables X1, . . . , Xk corresponding to the k-dimensions
respectively. In what follows, we use CH(c(X̄)) where c(X̄) is a constraint repre-
sentation of the set of points in k-dimensional space and CH(c(X̄)) is a constraint
representing the convex hull of c(X̄). The PPL library provides functions that
take constraints as their arguments and return corresponding convex hulls as their
results.

As is illustrated in the following example, the constraint c(X̄) need not con-
strain every variable. An unconstrained variable has an unbounded range.

Consequently, an interpretation of a predicate symbol p/n over this domain is
a constrained atom of the form: p(t̄)← c(Ȳ ), (Ȳ ⊆ X̄ where X̄ = Var(t̄)).

Example 11. Consider the points (1,−2), (−2, 2), (3, 0) in a 2-dimensional space.
These points could be envisaged as a constraint c(X̄) of the form: (X1 = 1∧X2 =
−2) ∨ (X1 = −2 ∧X2 = 2) ∨ (X1 = 3 ∧X2 = 0). The smallest polyhedron, which
is a triangle, enclosing these points is given by the convex hull CH(c(X̄)) which is
X1−X2 ≤ 3∧ 2 ∗X1 + 5 ∗X2 ≤ 6∧ 4 ∗X1 + 3 ∗X2 ≤ −2. We use the PPL library
to compute such convex hulls.

The domain CP (convex polyhedral approximations) formed by the set of the
sets of constrained atoms, in which each set contains at most one constrained atom
per predicate, also forms a complete lattice 〈CP,vCH,uCH,tCH, ∅,AtomDC

〉. The
partial order, glb and lub operators vCH,uCH,tCH are defined as below. For
simplicity, in the following, assume t̄ = X̄.
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Let S1, S2 ∈ CP be two sets of constrained atoms. Then:

S1 vCH S2 ≡ ∀p ∈ Π : (p(t̄)← c1(X̄)) ∈ S1 ⇒
∃(p(t̄)← c2(Ȳ )) ∈ S2 : c1(X̄)⇒ c2(Ȳ )

S1 uCH S2 = {p(t̄)← CH(c1(X̄) ∧ c2(Ȳ )) | p(t̄)← c1(X̄) ∈ S1,
p(t̄)← c2(Ȳ ) ∈ S2}

S1 tCH S2 = {p(t̄)← CH(c1(X̄) ∨ c2(Ȳ )) | p/n ∈ Π : p(t̄)← c1(X̄) ∈ S1,
p(t̄)← c2(Ȳ ) ∈ S2}⋃

{p(t̄)← c1(X̄) | p/n ∈ Π : p(t̄)← c1(X̄) ∈ S1,
p(t̄)← c2(Ȳ ) /∈ S2}⋃

{p(t̄)← c2(Ȳ ) | p/n ∈ Π : p(t̄)← c2(Ȳ ) ∈ S2,
p(t̄)← c1(X̄) /∈ S1}

A pre-interpretation over the domain of convex polyhedra also induces a Galois
connection 〈2AtomDC ,⊆〉 −−→←−−α

γ
〈CP,vCH〉 with abstraction function α : 2AtomDC →

CP and concretisation function γ : CP → 2AtomDC defined as:

• α(I) = {p(X1, . . . , Xn) → CH(Args(Ip)) | p/n ∈ Π} where Ip ⊆ I is the set
of atoms in I containing predicate p, that is, the interpretation of the n-ary
predicate symbol p and Args(Ip) = {(t1, . . . , tn) | p(t1, . . . , tn) ∈ I}.

• γ(S) = {p(r̄) | ∃p(X̄)→ c(X̄) ∈ S ∧ c(X̄/r̄)}.

Summary

This chapter formalised the bottom-up semantics that form the basis for the static
analysis of constraint logic programs. In the next chapter, we explain how to
translate a linear hybrid automaton (LHA) into a constraint logic program. The
minimal model of the resulting constraint logic program is computed based on the
least fixed-point Algorithm 1. Whenever the computation of the concrete minimal
model becomes impossible, we define an abstract domain (mapped to the concrete
domain via a Galois connection) and the abstract minimal model is computed.
The concrete minimal model (resp. abstract minimal model), which is a precise
(resp. safe) approximation of the run-time behaviour of an LHA, can be analysed
in order to verify the properties of an LHA.
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Chapter 3

Formal modelling of Real-time
Systems

Introduction

A software bug is an erroneous behaviour inadvertently implemented in software.
An erroneous behaviour means either the absence of a desired functionality or the
presence of a prohibited functionality. There are several factors that contribute to
bugs, of which two important ones are: (i) the intricate complexity in the problem
targeted by the software; (ii) complexity in implementing the problem’s solutions
in software. Embedded systems are no less complex than other kinds of software
and arguably the presence of hybrid behaviour and real time requirements can
increase complexity.

Formal Verification

The most expensive bugs to correct are those that occur earliest in the software
development process. Particularly this is true of the bugs in the specification that
are not detected until the software testing phase. Such bugs could be caught by
formally verifying the system specification against the system requirements.

Formal verification is a technique for mathematically analysing system correct-
ness where first the system specification and its correctness properties are formally
modelled or specified in a formal language and then following a proof method
the correctness of the system model with respect to the specified properties is
established.

The formal languages, called specification languages, could be broadly cate-
gorised [120] into two classes: (a) modelling languages and (b) property specification
languages. Examples of modelling languages used for specifying embedded systems
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include CSP [67], Petri nets [101], Timed Automata [6] and Hybrid Automata [59]
among several others [78]. Examples of property specification languages used for
specifying reactive properties include temporal logics [92], TLA [84] etc.

There are several models of computation [86, 1] to choose from while modelling
a system. For instance, state transition systems [77, 81], Petri nets [101, 32],
data flow networks [74], etc. are some models of computation. A state transition
system [81] has state variables whose values identify its state and the change in
the variable values identify the state transition. The state and state transition
capture the state and action of the modelled reactive system; while the sequence
of states generated by the state machine capture the reactive behaviour. The state
transition system model can be conveniently extended [1] for modelling reactive
systems.

Most of the modelling languages provide an expressive syntax relevant for spec-
ifying reactive systems and have semantics based on the state transition system
model. In this dissertation, we focus on a modelling language called Linear Hybrid
Automata.

Formal Modelling of Embedded Systems

There exist a wide range of formal modelling languages. In a formal model, we
use mathematical structures such as sets, functions, relations, and arithmetic.
Modelling a system using mathematical structures can be difficult. To make for-
mal modelling easier, several high-level formal modelling languages for embedded
systems have been developed. These modelling languages, like high-level program-
ming languages that both abstract the target hardware-related intricacies and pro-
vide several language constructs oriented towards embedded systems, hide some
of the mathematics and provide high-level expressiveness.

To choose an appropriate modelling language, we need to establish the main
features and functionality of the target embedded systems that are to be modelled;
this is discussed in the following section.

Chapter Overview

- Section 3.1 introduces the features of embedded systems.

- Section 3.2 introduces the language of Linear Hybrid Automata.

- Section 3.3 presents a standard scheme to translate LHA models into con-
straint logic programs.

- Section 3.4 explains how the constraint logic program forms the common
basis to analyse the encoded LHA model.
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3.1 Embedded Systems

Embedded systems are microcontroller-based systems that are embedded inside
another system in order to control its operation. For instance, a car heating
system contains an embedded system that decides when to turn on the heater.
Embedded systems are predominantly employed as controllers in digital control
systems.

3.1.1 Digital control systems

A digital control system comprises: (i) a digital computer (which is an embedded
system); (ii) a sensor; (iii) a (continuous) plant and (iv) an actuator. Figure 3.1
gives a generic block diagram of a digital control system.

digital 
controller

sensors

actuators

plant

Figure 3.1: Block diagram of a digital control system [40].

The digital computer controls the state of the plant, which is a physical process,
by executing a control program. A control program, from time to time, depending
on the plant state, computes the necessary control actions to maintain the plant
state within certain desired limits. The sensors measure the observable physical
properties (like temperature, pressure, etc.) of the plant, while the actuators
stimulate the plant by generating the physical signals (inputing some energy, etc.)
corresponding to the computed control actions. Once stimulated, the plant state
reacts according to certain continuous laws. Figure 3.2 shows a generic control
program.

repeat forever
read the state of the plant via sensors;
compute the control action according to a pre-defined control law;
imposes the computed control on the plant via actuators;

Figure 3.2: A control program

Thus, analysing an embedded system (digital computer) formally requires mod-
elling not only the control program but also the plant, the sensors and the actu-
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ators. In the following, we formalise the behaviour of plants, sensors, controllers
and actuators.

Example 12. Consider the digital control system shown in Figure 3.3. The control
system is expected to maintain the water level in a tank, which gets emptied at
variable rate. This system has two actuators, namely the pump and the valve, and
a water-level sensor. When turned on the pump delivers water into the tank at
a constant rate, while the valve empties the tank at a constant rate. The sensor
measures the level of water in the tank.

Tank

Pump

Valve

level
sensor

digital
computer

Figure 3.3: A water level control system.

3.1.2 Formal behaviour

Plant

If the plant has n variables then its behaviour is formally modelled by the contin-
uous function1 p : T → Rn (T ∈ [0,+∞]), which is defined as:

p(t) = p(t0) +

∫ t

t0

ṗ(t)dt (3.1)

where:

• t ∈ T is the variable representing time;

• t0 is the time of initialisation and p(t0) gives the plant state at instance t0;

• ṗ(t) is the rate of change in the plant state and is defined as below:
ṗ(t) : Rn × T → Rn is a function of plant state and time that defines the
rate at which the plant state changes;

1Here continuous means the function (resp. behaviour) is continuous with respect to time.

36



It should be noted that the variable t, which represents time, takes values that
range over the set T , which is a domain of real numbers. Since the domain of
real numbers is dense2, embedded systems fall under the category of infinite state
systems.

The plant state might change either linearly or non-linearly with respect to
time. Also such dynamics could be either deterministic or non-deterministic.

Deterministic Vs. Non-deterministic plant dynamics A plant can evolve
either deterministically or non-deterministically. This can be explained by defining
a total function ps : T → 2R

n
(T ∈ [0,+∞]) that for a given time instance

returns the set of states possible for a plant. A plant is deterministic if and only if
∀t ∈ T : | ps(t) | = 1; while a plant is non-deterministic if ∃t ∈ T : | ps(t) |> 1.

Linear vs. Non-linear plant dynamics Finally, a plant can evolve either
linearly or non-linearly with respect to time and other variables. Since non-linear
systems are not amenable to automatic verification, they are often approximated
either with the sum of squares or with the linear equations [60], and are then
verified. In this dissertation, we focus on linear hybrid systems only.

Sensor

A sensor measures some continuous property of a plant. Formally, such a measure-
ment is a function accepting a time value t and property value sp ∈ R as its input
and returns a discrete value vdt ∈ Disc, where Disc is a set of discrete symbols
(like integers or limited precision floating-point numbers).

Let n sensors measure n state variables. Then such a measurement is a function
sensor : T × Rn → Discn mapping n-dimensional dense real space into an n-
dimensional finite discrete state space.

Digital computer

The digital computer executes a control program of the form shown in Figure 3.2.
In more detail each step is as follows:

1. Read the state of the plant. The sensors are either read continuously or at
regular time points. The continuous sensing is modelled by assuming that
the measurements are available in the control step at all times; while in

2Between any two distinct real (resp. rational) numbers there exists another real (resp.
rational) number.
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control(y1, . . . , yn, t) =


(v1

1, . . . , v
1
m) if (y1, . . . , yn) ∈ Region1

(v2
1, . . . , v

2
m) if (y1, . . . , yn) ∈ Region2

...
(vcr1 , . . . , v

cr
m) if (y1, . . . , yn) ∈ Regioncr

Figure 3.4: A generic control function

the regular mode the measurements are available at certain pre-determined
periodic points.

2. Compute the control action. A control law defines the values of control
variables as a function of plant state and time. Figure 3.4 gives a generic
control function control : Rn × T → Rm of a system with n state variables
(y1, . . . , yn) and m control variables (u1, . . . , um). In the Figure, Regioni ⊆
Rn (where i ∈ {1, . . . , cr} and cr ∈ N) are regions in n-dimensional real
space and the tuple assignments (u1, . . . , um) := (v1, . . . , vm) means ui := vi
(for i ∈ {1, . . . ,m}).
Such control laws can be modelled with discrete automata as illustrated in
Example 13.

Deterministic vs. Non-deterministic automata. Again the control law might
be either deterministic or non-deterministic. Accordingly the control pro-
gram could be modelled either with a deterministic automaton or non-
deterministic automaton. In a deterministic automaton, at any given time,
at most one transition is enabled. In a non-deterministic automaton, there
exists some time point where multiple transitions are enabled.

Discrete vs. Continuous control action. The function control : Rn×T → Rm

(seen in Figure 3.4) is a continuous valued function. But it could well be
a discrete valued function like control : Rn × T → Discm. Accordingly,
the control action could be modelled either as a discrete control function or
continuous control function.

3. Impose the computed control. Once the control values are computed, the
actuators are driven with those values.

Actuator

An actuator accepts the computed control values, which are discrete symbols, and
translates them into an equivalent continuous stimulus on the plant (if the plant
is continuous). Such a stimulus in turn induces a change in the rate of change i.e.
ṗ(t).
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Thus, if there are m control variables to monitor n state variables, then the
actuators can be modelled as a function actuator : Discm → Rn mapping the
discrete controls to the rate of change they induce; that is, the ith component of
the result is the rate of change of the ith state variable for the given values of the
actuators. This concept is illustrated with Example 14.

Example 13. The embedded system (of Example 12) maintains the water level w
between 5 units and 10 units by executing the control program shown in Figure 3.5.
p and v are control variables corresponding to the two actuators pump and valve,
respectively. If the control variable is set, then the actuator gets turned on when
the control is imposed.

repeat forever
sampling: Read w from the sensor;
control law:

if (w ≤ 6) then p = 1, v = 0;
else if (6 < w < 9) then p = 0, v = 0;
else if (w ≥ 9) then p = 0, v = 1;

Actuation: Drive the pump and valve accordingly.

Figure 3.5: The control sequence for the water level controller.

Thus, at any given instance, the controller will be in one of the three modes:
(a) mode00, the mode where both pump and valve are signalled off;
(b) mode10: the mode where pump and valve are signalled on and off, respectively;
or
(c) mode01: the mode where pump and valve are signalled off and on, respectively.
Since the control program repeats the control law forever, the mode changes instan-
taneously depending on the plant state.

This controller is modelled with the discrete automaton shown in Figure 3.6.
The value of the variable w is made available at the controller by the sensor.

Example 14. The system has two control variables, namely pump and valve and
one state variable namely w. Depending on whether the pump and valve are turned
on or off, the water level in the plant varies at different rates. While the pump and
valve are turned off the water level w drops 0.1 unit per unit time i.e. ẇ = −0.1.
When the pump is on and valve is off ẇ = 0.5; while pump is off and valve is on
ẇ = −1.

This actuation behaviour is given by the partial function actuation : {1, 0} ×
{1, 0} → R defined as:
actuation(0, 0) = −0.1
actuation(1, 0) = 0.5

39



w=<6

6<w<9

w=<6

w>=9

6<w<9

w=7

w>=9

mode_01 mode_10

mode_00

Figure 3.6: The discrete automaton modelling the control program in Example 13.

actuation(0, 1) = −1.

Let the system be initialised at t0 = 0 with water level w = 7. Then the water
level after a lapse of 11 seconds is given by:

w(11) = w(0) +

∫ 11

0

ẇ(t)dt [By Equation 3.1] (3.2)

Since the pump and valve are turned on and off depending on w, the rate of
change ẇ(t) changes. We can see that in the first 10 seconds the automaton stays
in mode00 where ẇ(t) = −0.1 in the last second it spends in mode10. The above
equation translates to:

w(11) = w(0) +

∫ 10

0

(−0.1)dt+

∫ 11

10

(0.5)dt

= 7 + (−0.1) ∗
∫ 10

0

dt+ (0.5) ∗
∫ 11

10

dt

= 7 + (−0.1) ∗ [t]10
0 + (0.5) ∗ [t]11

10

= 7 + (−0.1) ∗ [10− 0] + (0.5) ∗ [11− 10]

= 7− 1 + 0.5

= 6.5
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continuous 
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Figure 3.7: Block diagram of a hybrid model.

Thus modelling of embedded systems, on one hand, requires formal languages
that allow for modelling discrete behaviour and on the other hand requires lan-
guages that allow for specifying continuous dynamics of the plant. For instance,
finite state automata provide an ideal formalism for specifying discrete behaviour,
while differential equations provide an ideal formalism for specifying continuous
behaviour.

Several hybrid modelling languages [80] have been developed that combine both
differential equations and automata formalisms. Of such modelling languages,
Hybrid automata and Timed automata are the most popular ones [68].

Figure 3.7 gives a generic block diagram of a hybrid model corresponding to a
discrete control system.

In this dissertation, we focus on the language of Linear Hybrid Automata as
the modelling language. This language allows for modelling control systems with:

• plants that evolve continuously, and linearly ;

• control programs that continuously read the sensors and non-deterministically
compute the (discrete) control actions.

Initially the language was intended to model deterministic plants and control pro-
grams, but were later extended to model non-deterministic ones also. We do not
model the sensors and actuators explicitly. Their functionality is incorporated in
the control automaton.

3.2 Linear Hybrid Automata

3.2.1 The language of Linear Hybrid Automata

Following [59], we formally define a linear hybrid automaton as a 6-tuple
〈Loc, Trans, Var, Init, Inv,D〉, with:
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• A finite set Loc of locations also called control nodes, corresponding to con-
trol modes of a controller/plant.

• A finite set Var = {x1, x2, . . . , xn} of real valued variables, where n is the
number of variables in the system. The state of the automaton is a tu-
ple (l, X), where X is the valuation vector in Rn, giving the value of each
variable. Associated with variables are two sets:

– ˙Var = {ẋ1, . . . , ẋn}, where ẋi represents the first derivative of variable
xi w.r.t time;

– Var′ = {x′1, . . . , x′n}, where x′i represents xi at the end of a transition.

• Three functions Init, Inv and D that assign to each location l ∈ Loc

three predicates respectively: Init(l), Inv(l) and D(l). The free variables of
Init(l) and Inv(l) range over Var, while those of D(l) range over Var∪ ˙Var.
An automaton can start in a particular location l only if Init(l) holds. So
long as it stays in the location l, the system variables evolve as constrained
by the predicate D(l) not violating the invariant Inv(l). The predicate D(l)
constrains the rate of change of system variables.

• A set of discrete transitions Trans = {τ1, . . . , τt}; τk = 〈k, l, γk, αk, l′〉 is a
transition

– uniquely identified by integer k, 0 ≤ k ≤ t;

– corresponding to a discrete jump from location l to location l′; and

– guarded by the predicate γk and with actions constrained by the pred-
icate αk.

In the above, the symbols γk and αk denote the 3-ary guard predicate γ(k, l, l′)
and the 4-ary action predicate α(k, l, (l′, X), (l′, X ′)), respectively, where
X ⊆ Var and X ′ ⊆ Var′.

In the following example (Example 15), we illustrate the LHA model of a water-
level control system. This system is an adapted version of the water-level control
system defined in [57].

Example 15. Consider a water-level monitoring system similar to the one shown
in Figure 3.3 with pump as the actuator and level-sensor as the sensor. There is a
constant discharge of water from the tank and the system is expected to maintain
the water-level between 1 unit-height and 12 unit-height by turning the pump ON
or OFF from time to time. The reaction time of the pump is 2 time-units i.e. to
switch from ON to OFF (or OFF to ON) mode it takes 2 time-units. The LHA
model of this system is shown in Figure 3.8.
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0

Figure 3.8: An LHA model of the water-level monitor.

This graphical model when expressed in the LHA language (defined previously)
looks like:

1. Loc = {l0, l1, l2, l3}; That is there are four locations in the LHA identified by
l0, l1, l2 and l3.

2. Init(l0) : w = 0, x = 0, Init(l1) : false, Init(l2) : false and Init(l3) : false;
That is l0 is the initial location.

3. Var = {w, x} and ˙Var = {ẇ, ẋ};
The variable w corresponds to the water level in the tank, while variable x
records the time lapsed in a location.

4. Inv(l0) : w < 10, Inv(l1) : x < 2, Inv(l2) : w > 5 and Inv(l3) : x < 2;

5. D(l0) : ẇ = 1 ẋ = 1, D(l1) : ẇ = 1 ẋ = 1, D(l2) : ẇ = −2, ẋ = 1 and
D(l3) : ẇ = −2, ẋ = 1;

6. Trans = {τ0, τ1, τ2, τ3} where

• τ1 = 〈1, l0, γ1, α1, l1〉 where γ1 : w = 10 and α1 : x := 0;

• τ2 = 〈2, l1, γ2, α2, l2〉 where γ2 : x = 2 and α2 :;

• τ3 = 〈3, l2, γ3, α3, l3〉 where γ3 : w = 5 and α3 : x := 0

• τ4 = 〈4, l3, γ4, α4, l0〉 where γ4 : x = 2 and α4 :
That is there are four discrete transitions τ1, τ2, τ3 and τ4 from l0 to l1,
l1 to l2, l2 to l3 and l3 to l0 respectively. In the above, since τ2 and τ4

have no actions hence α2 and α4 are empty.
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3.2.2 LHA Semantics as a Transition System

At any time instance, an LHA has a state (l, X) defined by the control location
(l ∈ Loc) and the state of its variables (X ∈ Rn) at that time point. With the
passage of time either the location or variables might change thus resulting in a
overall state transition. Such state transition semantics of LHAs can be formally
described as consisting of runs of a labelled transition system.

Definition 43. A labelled transition system is a 4-tuple 〈S, S0, A,
a→〉, a ∈ A with:

• A possibly infinite set S ⊆ Loc× Rn, called the state space defined as:
S = {(l, X) | l ∈ Loc, X ∈ Rn : X |= Inv(l)}, which is the set of all
(l, v1, . . . , vn) ∈ Loc × Rn where predicate Inv(l) holds at valuation X i.e.
[x := v], x means (x1, . . . , xn) while v = (v1, . . . , vn).

• A non-empty set S0 ⊆ S, called initial states of LHA, defined as:
S0 = {(l, X) | (l, X) |= Init(l)}. It is a set of states satisfying the initiali-
sation predicate.

• A possibly infinite set A = R≥0 of positive reals, over which the time durations
range.

• A binary transition relation
a→ on the state space S.

The transitions are of two kinds: delay transitions and discrete transitions. A
delay transition corresponds to the state change that occurs because of the passage
of time staying in the same location; while discrete transition corresponds to the
state change that occurs because of the change of the location.

Definition 44 (delay transition). A delay transition is defined as: (l, X)
δ→

(lδ, Xδ) iff l = lδ, where

• δ ∈ R≥0 is the duration of time passed staying in the location l, during which
the predicate Inv(l) continuously holds;

• X and Xδ are the variable valuations in l such that D(l) and Inv(l), the
predicates on location l, hold. The predicate D(l) constrains the variable
derivatives ˙Var such that Xδ = X + δ ∗ Ẋ.

Definition 45 (discrete transition). A discrete transition is defined by (l, X) →
(l′, X ′), where

• there exists a transition τ = 〈k, l, γ, α, l′〉 ∈ Trans identified by k;

• the guard predicate γ(k, l, l′) holds at the valuation X in location l and k
identifies the guarded transition;
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• the associated action predicate α(k, l, (l′, X), (l′, X ′)) holds at valuation X ′

with which the transition ends entering the new location l′ (k identifies the
transition that triggers the action).

If there are events in the system, then such events are raised by the discrete
transition. In that case, the discrete transition is labelled with an associated event,
which is raised along that transition.

Run

A run σ = s0s1s2 · · · is an infinite sequence of states (l, X) ∈ Loc × Rn, where
l is the location and X is the valuation. In a run σ, the transition from state si
to state si+1 are related by either a delay transition or a discrete transition. As
the domain of time is dense, the number of states possible via delay transitions
becomes infinite following the infinitely fine granularity of time. Hence the delay
transitions and their derived states are abstracted by the duration of time (δ) spent
in a location. Thus a run σ of an LHA is defined as:

σ = (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · ·
where:

1. t0 is the initialisation instance and ti (for i ≥ 1) are the instances at which
the γi−1 become true and the location li is entered by applying the action
αi−1 ;

2. δj = tj+1 − tj (j ≥ 0) is the duration of time spent in lj;

In the above run, the new state (lj+1, Xj+1) is entered with valuation Xj+1 as
constrained by αj. Further τj = 〈j, lj, γj, αj, lj+1〉 ∈ Trans. Again during this
time duration δj, the defined invariant Inv(lj) on lj continues to hold, and the
invariant Inv(lj+1) holds at valuation Xj+1. Most importantly, between (li, Xi, ti)
and (li+1, Xi+1, ti+1), if ti+1 6= ti then there is an infinite path connecting the states
that evolve continuously with time according to D(li). Finally, whenever there is
a non-deterministic discrete transition, the above run branches out accordingly.

The following example (Example 16) illustrates the semantics of an LHA model.

Example 16. Consider the LHA model from the previous example (Example 15).
The interpretation of this LHA model is as follows:

In locations l0 and l1, water-level increases3 at the rate of 1 unit/unit-time
i.e. ẇ = 1. In the locations l2 and l3, the water-level decreases4 at the rate of

3The locations l0, l1 correspond to that mode of the controller where the actuator “pump” is
turned ON and the actuator “valve” is turned OFF.

4The locations l2 and l3 correspond to that mode of the controller where the valve is turned
ON and the pump is turned OFF.
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1 unit/unit time i.e. ẇ = −1. In all the locations, the clock increases at the rate
of 1unit/unit-time.

The automaton is initialised in location l0 with w := 0 and x := 0. The control
stays in a location as long as the invariant holds. Once in a location lk, the water
level varies following D(lk). When the invariant (of a location lk) is violated and
the guard associated on the transition outgoing from that location (lk) holds, the
control shifts to the new location. This continues for ever.

Every location has an invariant. They are w < 10, x < 2, w > 5 and x < 2 on
locations l0, l1, l2 and l3 respectively.

3.3 Translation of LHA into CLP

Table 3.1 shows a scheme for translating an LHA specification into CLP clauses.
In what follows, each row of this table is explained.

The first row in the table shows how the state is modelled in CLP. We add
an explicit “time stamp” to a state, extending Var, Var′ with time variables t, t′

respectively giving Vart, Var
′
t. We model a state (along with its time stamp) as a

list, whose last element gives the time stamp of the state and with location as its
first element.

The predicates (timeOf/2 and locOf/2) defined in the second row are used
to extract particular information about a given state. Namely, given a state S,
timeOf(S, T ) gives its time stamp T , which is the last element of the list modelling
the state S (see the first row of the table); while locOf(S, L) returns its location
L, which is the first element in the list modelling the state S. The other predicate
before(S, S1), which defines the temporal order, relates the two states S, S1 if S
has a time stamp less than S1.

Example 17. Consider an LHA with two locations i.e. Loc = {l1, l2} and two
state variables Var = {x1, x2} whose values range over the real number domain.
Then its state is modelled with a list [L,X1, X2, T ], where L corresponds to the
LHA location; X1, X2 model the variables and T models the state’s time stamp.
Let l1 be the location of initialisation where the variables are initialised to (x1, x2) =
(0, 0). Then its initial state S = [l1, 0, 0, 0] (the last variable corresponds to time).
Now the following is the illustration of timeOf/2, locOf/2 and before/2:

timeOf([l1, 0, 0, 0], 0).
locOf([l1, 0, 0, 0], l1).
before([l1, 0, 0, 0], [ , , , T1])← T1 > 0.
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LHA CLP
location l L

state variables x1, . . . , xn X1,. . .,Xn
state with time t and location l S = [L,X1,. . .,Xn,T]
state time timeOf(S,T) ← lastElementOf(S,T).

state location locOf(S,L) ← S = [L| ].

temporal order on states before(S,S1) ← timeOf(S,T),

timeOf(S1,T1),

T<T1.

Init(l) init(S) ← locOf(S,L),

to clp(Init(l)).
Inv(l) inv(L,S) ← locOf(S,L),

to clp(Inv(l)).
D(l) (using the d(S,S1)← locOf(S,L),

derivative relation Dt(l) timeOf(S,T),

explained in the text) locOf(S1,L),

timeOf(S1,T1),

to clp(Dt(l)).
LHA transition 〈k, l, γk, αk, l′〉
γk gamma(K,L,S) ← locOf(S,L1),

to clp(γk).
αk alpha(K,L,S1,S2) ← locOf(S1,L1),

locOf(S2,L1),

to clp(αk).
delay transition delaytransition(S0,S1) ←

locOf(S0,L0),

before(S0,S1),

d(S0,S1),

inv(L0,S1).

discrete transition discretetransition(S0,S2)←
locOf(S0,L0),

before(S0,S1),

d(S0,S1),

gamma(K,L0,S1)

alpha(K,L0,S1,S2).

transition transition(S0,S2) ←
discretetransition(S0,S1),

delaytransition(S1,S2).

Table 3.1: Translation of LHAs to CLP

47



The translation of LHAs is direct apart from the handling of the constraints
on the derivatives on location l, namely D(l) which is a conjunction of linear con-
straints on ˙Var.

The predicates Init(l) and Inv(l) being linear constraints (over state variables)
are represented, following [70], as a CLP conjunction via to clp(.). to clp(.)

means the translation of the linear constraints in the corresponding LHA predicates
into a CLP conjunction. For instance, in the previous example, l1 being the initial
location, in the LHA, Init(l1) is a linear constraint encoding the initial states of
the state variables; it is of the form: x1 = 0 ∧ x2 = 0.

So to clp(Init(l1)) means a constraint of the form X1 = 0 ∧X2 = 0.

The predicate D(l) in LHA specifies the rate at which the state variables change
with respect to time. This requires keeping track of the time lapsed using the time
stamps of the states. The constraint Dt(l) is a conjunction of linear constraints on
Vart∪Var′t, obtained by replacing each occurrence of ẋj.in D(l) by (x′j−xj)/(t′−t)
in Dt(l), where t′, t represent the time stamps associated with x′j, xj respectively.
In LHAs, the state variables change at a constant rate with respect to time. So,
ẋi = c (where c ∈ R) means a constraint (x

′
i − xi)/(t

′ − t) = c where x
′
i, xi are the

values of the variable at times t
′
, t respectively.

Discrete transitions, i.e. τk = 〈k, l, γk, αk, l′〉 (where k is the id of a transition),
translate to three CLP predicates:

1. gamma(K,L, S) modelling the guard γ associated with a transition τ and is
defined as:

gamma(K,L, S)←
locOf(S, L1),
to clp(γk).

where:

• the argument K models the identifier τk;

• the arguments L,L1 model locations of the transition predecessor state
and successor state, respectively;

• the argument S is the list [L,X1, . . . , Xn, T ] modelling the state;

• the linear constraint corresponding to the guard γk is represented by
the CLP conjunction via to clp(γk).

This predicate evaluates to true, whenever τk can fire in state S.

2. alpha(K,L, S1, S2) modelling the action (αk) associated with a discrete
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transition and is defined as:

alpha(K,L, S1, S2)←
locOf(S1, L1),
locOf(S2, L1),
to clp(αk).

where:

• K models to the transition id τk;

• S1, S2 are lists modelling the states before and after the action;

• L,L1 models the locations of transition predecessor and successor;

• the assignments in an action translate to a CLP conjunction via to clp(αk).

3. discretetransition(S0, S2) modelling the discrete transition is defined as:

discretetransition(S0, S2)← locOf(S0, L0),
before(S0, S1),
d(S0, S1),
gamma(K,L0, S1),
alpha(K,L0, S1, S2).

where the arguments S0, S2 are the respective states before and after the
transition, d/2 is the CLP translation of D(l) as explained earlier.

What this transition predicate says is “there is a discrete transition from S0 to S2
such that: (i) there is a state S1 after S0 where the guard gets enabled, (ii) then
the state S2 is entered by applying the action associated with the transition”.

Similarly a delay transition translates to the CLP predicate delaytransition/2
defined as:

delaytransition(S0, S1)← locOf(S0, L0),
before(S0, S1),
d(S0, S1),
inv(L0, S1).

where S0, S1 are the predecessor and successor states respectively. What this
transition predicate says is “the LHA at a state S0 evolves to state S1 over a
passage of time during which both the variables evolve as specified by d(S0, S1)
and the invariant specified by inv(L0, S1) holds”.

Instead of differentiating between a delay and a discrete transition, we define
a new transition by integrating both kinds of transitions. This transition is any
discrete transition that is followed by a delay transition. This transition is defined
by the predicate transition/2, which is then used in the CLP translation of the
labelled state transition system (Definition 43), which defines the semantics of an
LHA (Figure 3.9).
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3.3.1 Formal translation of an LHA into a CLP program

In the following, we formalise the translation scheme presented earlier.
An LHA = 〈Loc, Trans, Var, Init, Inv,D〉 is translated into the CLP program

CLP = C0 ∪C1 ∪CInit ∪CInv ∪CD ∪CTr where C0, C1, CInit, CInv, CD and CTr

are CLP clauses defined as below.

• C0 = {
(timeOf(S, T )← lastElelementOf(S, T )),
(locOf(S, L)← [L| ]),
(before(S, S1)← (timeOf(S, T ), timeOf(S1, T1), T ≤ T1))
};

• C1 = {
(discretetransition(S0, S2)← locOf(S0, L0),

before(S0, S1),
d(S0, S1),
gamma(K,L0, S1),
alpha(K,L0, S1, S2)),

(delaytransition(S0, S1)← locOf(S0, L0),
before(S0, S1),
d(S0, S1),
inv(L0, S1))

};

• CInit = {
(init(S)←
state(S),
locOf(S, L),
toclp(Init(L), S, Var))|L ∈ Loc}

• CInv = {
(inv(L, S)←
state(S),
locOf(S, L),
toclp(Inv(L), S, Var))|L ∈ Loc}

• CD = { (d(S, S1)← state(S),
state(S1),
locOf(S, L),
locOf(S1, L), timeOf(S, T ),
timeOf(S1, T ),
toclp(Dt(L), S, S1, Var, Var′))|L ∈ Loc}
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• CTr = {(alpha(K,L, S1, S2)← state(S1),
state(S2),
locOf(S1, L1),
locOf(S2, L2),
toclp(αK , S1, S2, Var))|τK ∈ Trans}

∪
{(gamma(K,L, S)← state(S),

locOf(S, L),
toclp(γK , S, Var))|τK ∈ Trans}

In the above clauses, the symbols toclp/3, toclp/4 and toclp/5 are functions
that accept constraint expressions whose free variables are from Var and Var′ and
return their equivalent expressions where each occurrence of state variable v ∈ Var

that is in lower case is replaced with a logic variable that is in upper case. The
toclp function is defined as below. In the following: (i) the arguments E1 and E2
appearing in toclp functions are linear arithmetic expressions over the variables
Var ∪ Var′; (ii) the arguments S is a list of n + 2 logic variables (where n is the
number of elements in Var) as explained in the previous section.

• – toclp(E1 < E2, S, Var) = (toclp(E1, S, Var) < toclp(E2, S, Var)).

– toclp(E1 ≤ E2, S, Var) = (toclp(E1, S, Var) ≤ toclp(E2, S, Var)).

– toclp(E1 > E2, S, Var) = (toclp(E1, S, Var) > toclp(E2, S, Var)).

– toclp(E1 ≤ E2, S, Var) = (toclp(E1, S, Var) ≤ toclp(E2, S, Var)).

– toclp(E1 + E2, S, Var) = (toclp(E1, S, Var) + toclp(E2, S, Var)).

– toclp(E1− E2, S, Var) = (toclp(E1, S, Var)− toclp(E2, S, Var)).

– toclp(E1 = E2, S, Var) = (toclp(E1, S, Var) = toclp(E2, S, Var)).

– toclp(n, S, Var) = n. (where n numeric constant)

– toclp(x, S, Var) = X, where lookup(x,Var,S) = X The lookup/3 re-
turns the logic variable X modelling the variable x ∈ Var. The vari-
ables x1, . . . , xn are mapped to the logic variables X1, . . . , Xn. Let
S = [L,X1, . . . , Xn, T ] and Var = [x1, . . . , xn], then lookup(xi, Var, S)
returns the (i+ 1)th element of S i.e. Xi.

• – toclp(E1 < E2, S, S1, Var, Var′) =
(toclp(E1, S, S1, Var, Var′) < toclp(E2, S, S1, Var, Var′))

– toclp(E1 ≤ E2, S, S1, Var, Var′) =
(toclp(E1, S, S1, Var, Var′) ≤ toclp(E2, S, S1, Var, Var′))

– toclp(E1 > E2, S, S1, Var, Var′) =
(toclp(E1, S, S1, Var, Var′) > toclp(E2, S, S1, Var, Var′))
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– toclp(E1 ≥ E2, S, S1, Var, Var′) =
(toclp(E1, S, S1, Var, Var′) ≥ toclp(E2, S, S1, Var, Var′))

– toclp(E1 = E2, S, S1, Var, Var′) =
(toclp(E1, S, S1, Var, Var′) = toclp(E2, S, S1, Var, Var′))

– toclp(x, S, S1, Var, Var′) = X, where lookup(x, Var, S) = X

– toclp(x′, S, S1, Var, Var′) = X, where lookup(x′, Var′, S1) = X

• toclp(E1 := E2, S1, S2, Var) = (toclp(E1, S2, Var) = toclp(E2, S1, Var))

3.3.2 What does the transition/2 predicate model?

With the above defined transition/2 predicate it is not possible to exactly model
the continuous dynamics of the modelled LHA. The resulting CLP model repre-
sents a system having the same dynamics as the original LHA but every (linear)
run of the LHA modelled gets abstracted with an infinite set of pseudo-continuous
runs.

Recall that the run of an LHA is of the form:
σ = (l0, X0, t0)

δ0→(γ0,α0) (l1, X1, t1)
δ1→(γ1,α1) (l2, X2, t2) · · · .

For any delay δk > 0 after a state (lk, Xk, tk) the system state evolves continu-
ously resulting in the set of states:

{(lk, Xk,0, tk,0), . . . , (lk, Xk,i, tk,i), . . . , (lk, Xk,∞, tk,∞)}
where (l0, Xk,0, tk,0) = (lk, Xk, tk) and the last element is the state when the guard
γk holds firing the discrete transition into (lk+1, Xk+1, tk+1) and tk,∞ = tk+1. This
set is a dense set. The run corresponding to the delay following (lk, Xk, tk) is
defined by a trajectory formed by the temporally ordered states from that dense
set.

On this run for any state (lk, Xk,i, tk,i) if tk < tk,i ≤ tk+1 there is a dense set
of predecessors and successors within the same location. But according to our
transition predicate, there is no transition predecessor or successor to any state
within the same location. Because of this abstraction, the run of an LHA is
modelled by an infinite set of runs of the form:

(l0, X0, t0)
δ0,1→ (l1, X1,2, t1,2)

δ1,2→ (l2, X2,3, t2,3) · · · where δi,i+1 ∈ [δi, δi + δi+1].

What this means is, there is at least one run in our model that does not contain
a state (corresponding to a location li) that is always visited at some time instance
ti + δ where δ ∈ [δi, δi + δi+1]. Consequently our CLP model does not preserve all
kinds of universal liveness and existential safety properties. Nevertheless, as will
be explained later, universal liveness properties of a certain kind are preserved by
the CLP model. Besides these all kinds of existential liveness and the universal
safety properties are preserved by our model. Various kinds of safety and liveness
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properties are presented in Chapter 4. In the following two paragraphs, we make
use of the concepts that are introduced in the latter chapters.

In the temporal language of CTL, state universal liveness and state existential
safety are specified with the formulas AFp and EGp, respectively, where p is an
atomic proposition. In brief, the CTL formula AFp states that “along all runs of
a system, in future, a state where proposition p holds is visited”. Similarly, the
formula EGp states that “there exists a run, where on all states, proposition p
holds”. Usually these properties are proved by checking that there does not exist
any counter-examples to the stated properties.

The counter-example for the property AFp is any run where EG¬p holds. If
the proposition p holds exactly at one time point during a delay in some location,
then as explained earlier there is at least one run where such time point is not
visited in our model run. This translates to presence of a run where ¬p holds
forever. So if the proposition p holds only at one time point during the delay in
some location, then the properties of the form AFp are not preserved. However, if
the proposition p happens to be an invariant for the entire delay period (in some
location), then we do preserve AFp properties. When we project this condition
on to the modelled LHA, what it turns out to be is that “if the proposition p is
entailed by the invariants on the locations of the LHA, then AFp is preserved”.
If p entails the invariant, then we can refine the locations of the LHA model by
partitioning its locations in a standard way such that we get a refined location
whose invariant entails p. Such a refinement of the LHA model ensures that the
consequent CLP model preserves the universal liveness. The refined LHA in all
respects has the same dynamics as the original LHA.

Since the property EGp is a negation of AF¬p, the same refinement meant for
preserving AFp also preserves this property. The Algorithm 2 outlines a procedure
to check whether a given CTL formula φ is preserved or not. If the algorithm
returns true then the property is preserved else it is not. This algorithm should be
input with: (a) the invariants on every location in the LHA; (b) the propositions
that are within the immediate scope of AF and EG operators. For a given CTL
formula, a proposition (or a boolean combination of two or more propositions) is
said to be in the immediate scope of a AF or EG if and only if it is the innermost
CTL operator quantifying the proposition. In the algorithm: nl is number of
locations in the LHA; np is the number of propositions in the formula that are in
the immediate scope of AF and/or EG; invi is the invariant of the states visited
while in location li (for i = 0 to nl−1); and pj (for j = 0 to np−1) is a proposition.
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Algorithm 2 Algorithm to check the property preservation.

for (j = 0; j ≤ np − 1; j = j + 1) do
for (i = 0; i ≤ nl − 1; i = i+ 1) do

if pj =⇒ invi then break;
od
if i ≤ nl − 1 then break;

od
if (j ≤ np − 1) or (i ≤ nl − 1) then return(false) ;
else return(true)

3.3.3 Different CLP Representations of a State Transition
System

In the above, we presented a scheme to translate the transition relation of an
LHA into CLP. In what follows, we show how the full state transition system is
represented in CLP.

State transition systems can be conveniently represented as logic programs.
Since such a representation is intended for verification purposes, the chosen repre-
sentation should meet the following criteria:

1. the values of variables can be continuous or discrete;

2. the transitions can be deterministic or non-deterministic;

3. the (possibly) infinite set of reachable states can be finitely represented and
computed;

4. the paths or traces can be represented and

5. we can reason both forward from an initial state and backward from a chosen
target state.

Since we use CLP(Q)as the representation/programming language, where the
variables are interpreted over the set of rational numbers, our representations in
CLP(Q)meet the first criteria by default. Furthermore, since an LHA involves
linear constraints over variables and constants ranging over real numbers (that
include both rational and irrational numbers), the modelling of LHAs in CLP(Q)is
justified under the implicit assumption that all constants are such reals which are
also rationals.

Logic programming is by default a non-deterministic language which directly
allows for modelling non-determinism. This is illustrated by the example below.
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Example 18. Consider a constraint logic program (CLP(Q)) defined by the fol-
lowing set of clauses:

p([1])←
t([X2], [X1])← X2 ≥ X1 + 10
t([X2], [X1])← X2 ≤ X1 − 10
r([X])← p([X])
r([X2])← r([X1]),

t([X1], [X2])

The above program specifies a state transition system with a single state variable
x, whose values range over a set of rational numbers, where predicates: p/1 defines
the initial state; t/2 defines the transition relation and r/1 defines the reachable
states of a state transition system. Meaning, the next state after the initial state
could be either x ≥ 11 or x ≤ −9.

With constraints, infinite sets of states can sometimes be finitely represented.
For instance, the infinite set of positive rational numbers could be finitely rep-
resented by a clause of the form: element(X) ← X >= 0. The two remaining
criteria are met depending on how the sequences of states arising from the tran-
sition system are modelled. For instance, a transition could be applied either
forwards or backwards.

3.3.4 State transition driver

We refer to that part of the representation which encodes the actual state transition
behaviour (of a state transition system) as the state transition driver or simply as
the driver.

Employing a particular driver makes it possible to compute the set of reach-
able states; while employing another (richer) driver makes it possible to represent
and compute the paths. Moreover some properties could be proved by travelling
backwards from a chosen target state, while others could be proved by travelling
forwards from an initial state. Therefore we use two kinds of drivers, one each for
forward reasoning and backward reasoning.

Forwards reasoning driver capturing reachable states

We model the forward transition behaviour with the predicate rstate/1. Figure
3.9 gives the definition of rstate/1 predicate.

The predicates init(S) and transition(S1, S2) appearing in the definition
of the driver are specific to a system and are extracted from the high level LHA
specifications. The arguments of predicates init/1, rstate/1 and transition/2
are states including the location and time stamps as mentioned earlier.
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rstate(S2) ←
transition(S1,S2),

rstate(S1).

rstate(S0) ←
init(S0).

Figure 3.9: Reachable states driver

qstate(S1) ←
transition(S1,S2),

qstate(S2).

qstate(Sk) ←
target(Sk).

Figure 3.10: Reaching states driver

Therefore, a complete representation of a state transition system STS is given
by the CLP program P , which is the union of the clauses that define predicates
init/1, transition/2 and the rstate/1 driver.

Example 19. The CLP program encoding the LHA model from the previous ex-
ample (Example 15) is shown in Figure 7.3. This is a forward reasoning driver
based CLP encoding.

Backwards reasoning driver capturing reaching states

The rstate/1 predicate was all about travelling forwards from an initial state. By
contrast, we could also travel backwards from a particular state. The state tran-
sition driver shown in Figure 3.10 allows for reasoning backwards from a specific
state, which is called target state.

The states that reach a target state are referred to as reaching states. The
backward driver is useful for computing the set of reaching states for a given target
state. This driver is useful to check a sub-class of safety and liveness properties.

The predicates target(Sk) and transition(S1, S2) appearing in the definition
of the backward driver are specific to a system and are extracted from the high
level LHA specifications. The arguments of predicates target/1, qstate/1 and
transition/2 are states.

Therefore, a complete representation of a state transition system STS is given
by the CLP program P , which is a union of the clauses that define predicates
init/1 (or target/1), transition/2 and the driver (either rstate/1 or qstate/1).
This is illustrated later by the Example 37 in Chapter 7.
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3.3.5 Parallel Composition of Linear Hybrid Automata

A system might be composed from two or more LHAs that interact by notifying
each other with events. To incorporate such systems, the language of LHA is
extended with a set of events Events = {evt1, . . . , evtne} (where ne is the number
of events in the component LHA). An LHA can raise an event along its discrete
transitions. The restriction is that at most one event can be mapped on to a
discrete transition. If there are two or more interacting LHAs in a system, all
the discrete transitions (across different LHAs) marked with the same event must
synchronize. If the discrete transition τ should synchronize on the event evte, then
that transition is labelled with that event. In the following, we briefly present the
rules of synchronization [5].

The discrete transitions of two automata LHA1 and LHA2 with events Events1

and Events2 respectively, synchronise on an event evt as following:

• if evt ∈ Events1 ∩ Events2, then the discrete transitions τi ∈ Trans1 and
τj ∈ Trans2 labelled with the event evt must synchronize;

• if evt /∈ Events2 but evt ∈ Events1, then the discrete transition τi of LHA1

can occur simultaneously with a zero duration delay transition of LHA2,
and similarly if evt ∈ Σ2 and evt /∈ Events1 then the discrete transition τj
of LHA2 can occur simultaneously with a zero duration delay transition of
LHA1.

Finally, a delay transition of LHA1 with a duration δ must synchronize with a
delay transition of LHA2 of the same duration.

The above rules of synchronisation are enforced by constructing a parallel prod-
uct of the involved LHAs.

3.4 What does the resulting CLP model cap-

ture?

We now relate LHA semantics with the minimal model of the constraint logic
program (based on rstate and qstate drivers).

Recall that the semantics of an LHA is given by runs, which are infinite se-

quences of the form (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · · . Let us
denote by a state a triple (l, X, t) where l is a location, X a valuation of the state
variables and t a time stamp. Any prefix of a run is called run-prefix. A reachable
state of the LHA is a triple s = (li, X̃i, δ̃i) where X̃i = Xi+ δ̃i ∗Ẋi, and 0 ≤ δ̃i ≤ δi.
In other words, a state is reachable if it is the state immediately resulting from
a discrete transition, or it is the state reached by delaying in a location for some
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time period. (Note that in the definition of reachable state we use a local time
stamp which is set to zero on entering a location).

Let Pr be the constraint logic program encoding the LHA model based on
the reachable states (rstate) driver and let Pq be the constraint logic program
encoding based on the reaching states (qstate) driver.

We now show in essence that the set of ground instances of the rstate/1
predicate in the minimal model gives the set of reachable states of an LHA. In the
following, we give a more formal presentation of this assertion.

Lemma 1. Let A = 〈Loc, Trans, Var, Init, Inv,D〉 be an LHA and Pr be the CLP
encoding of A. Suppose τk = 〈k, l, αk, γk, l′〉 is a discrete transition of A. Then for
every pair of states (s, s′)such that:

σ = (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · · is a valid run of A and

s = (li, X̃i, t̃i) with t̃i = δ̃i, 0 ≤ δ̃i ≤ δi and X̃i = Xi + δ̃i ∗ Ẋi

s′ = (li+1, X̃i+1, t̃i+1) with t̃i+1 = δ̃i+1, 0 ≤ δ̃i+1 ≤ δi+1, X̃i+1 = Xi+1 + δ̃i+1 ∗Ẋi+1

there exists transition(s, s′) ∈ M[[Pr]].

Proof. To reach s′ from s involves a (possibly zero-length) delay transition fol-
lowed by a discrete transition followed by a (possibly zero-length) delay transition.
The proof directly follows from the definitions of the predicates transition/2,
delaytransition/2 and discretetransition/2.

Theorem 3. Let A = 〈Loc, Trans, Var, Init, Inv,D〉 be an LHA and Pr be the
reachable state based CLP encoding of A. Then for every s = 〈li, X̃i, δ̃i〉 with

0 ≤ δ̃i ≤ δi on the run σ = (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · · of
A there exists rstate(s) ∈ M[[Pr]].

Proof. We prove this by induction on the length of a run-prefix (the index i in a

run). For a given run (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · · , define

the set of states Ri to be the set {(li, X̃i, δ̃i) | 0 ≤ δ̃i ≤ δi, X̃i = Xi+ δ̃i ∗Ẋi}. Every
reachable state in a run is in Ri for some i.

1. Base case (i = 0):

Pr contains a clause rstate(S’) :- init(S), delaytransition(S,S’) as
shown in Figure 3.9. Following the definitions of (i) the init/2 predicate
and (ii) the discretetransition/2 predicate, for every s ∈ R0 there exists
rstate(s) ∈ M[[Pr]].

2. Inductive case (i > 0): Assume that the proposition holds for all states in
R0, . . . , Ri−1. Pr contains a clause
rstate(S’) :- rstate(S),transition(S,S’).
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For the instance S = s, S’ = s′, we have transition(s, s′) ∈ M[[Pr]] by
Lemma 1, and rstate(s) ∈ M[[Pr]] by the inductive hypothesis. Hence
rstate(s′) is derivable and so rstate(s′) ∈ M[[Pr]].

Similarly, it can be shown that the ground instances of the qstate/1 pred-
icate in the minimal model of Pq give the states reaching a target state st i.e.
qstate(s) ∈ M[[Pq]]⇒ s ∈ S→st where S→st is the set of states reaching state st.

A minimal model is computed iteratively as defined in the previous chapter.
Since it is not always possible to compute a concrete minimal model, as an alter-
native an abstract minimal model is computed. In the following chapters, it will
be explained how minimal models provide a basis for proving certain properties.

Summary

In this chapter, we presented a systematic translation of LHA into a constraint logic
program. This constraint logic program preserves the reachable states. Besides
the reachable properties, the model also preserves a kind of liveness properties.
In the latter chapters Chapter 5 and Chapter 6, presented are techniques that
make use of the minimal model of the constraint logic programs to verify different
CTL properties. The next chapter (Chapter 4) introduces the language of Com-
putational Tree Logic and illustrates how to specify different classes of reactive
properties.
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Chapter 4

Computation Tree Logic: A
temporal property specification
language

Typically, formal verification comprises two phases: (i) the specification phase
where the system behaviour and the properties are specified and (ii) the proof
phase, where the system correctness is proved or disproved with respect to the
properties. System specification was the topic of the previous chapter, while prop-
erty specification is the topic of this chapter. This chapter presents a formal
property specification language called Computation Tree Logic and how to express
different classes of system properties in that language. In this dissertation, the
properties to be verified are specified in the Computation Tree Logic.

The correctness of a system behaviour is established with respect to the required
behaviours. A required behaviour is usually identified with the property to be
possessed by the system.

In the case of transformational systems, which terminate after transforming in-
puts into outputs, a property is specified with a pair of predicates: a pre-condition,
and a post-condition. The predicate pre-condition is a condition that should hold
on the input, while the post-condition is a condition that should hold on the out-
put. The input-to-output transformational behaviour is formally specified with
a transformation function. Finally, a property is verified to hold if this function
transforms the inputs, where the pre-condition holds, into the outputs, where the
post-condition holds. Such verification approaches due to Floyd [44] and Hoare
[66] are not adequate for verifying reactive systems, because their correctness de-
pends not only on their transformational behaviour but also on their behaviour
over time.

In the case of reactive systems, which do not terminate, the behaviour is given
by the infinite sequence of states:
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σ = s0 s1 s2 . . .
where each state following the initial state s0 results by applying a transition in the
preceding state. This sequence preserves the temporal order in which the states are
visited in real-time. Consequently, specifying a property mandates defining such
infinite sequences that possess that property. Let Prop be the set of sequences that
possess the property prop. Then the property prop can be verified [2, 3] by checking
whether the system behaviour σ is included in the property set Prop. The property
holds iff σ ∈ Prop. Hence specifying a reactive system’s property also requires
defining infinite state sequences possessing the property. With Computation Tree
Logic such state sequences can be specified.

System properties can be broadly grouped into three classes1 [91]: (i) Safety
properties, which specify the invariants characterising the system safety; (ii) Live-
ness properties, which specify the system progress; and (iii) Precedence properties,
which specify certain precedence ordering among the system properties.

Chapter Overview

- Section 4.1 presents the syntax and semantics of Computation Tree Logic.

- Section 4.2 introduces different classes of temporal properties and their spec-
ification in Computation Tree Logic.

- Section 4.3 discusses the use of CTL formulas to specify properties of hybrid
systems.

Temporal Logic

Temporal logic is a formalism used for describing infinite sequences. There exists
a rich collection of temporal logic languages [38, 73] that are used for various
purposes. Depending on how the time is modelled, there are two kinds of temporal
logics: (a) Linear-time temporal logics and (b) Branching-time temporal logics.

In the linear-time logics, time is modelled linearly i.e. each time-point has got
only one successor, whereas in branching-time logics a time-point could have more
than one successor. The Computation Tree Logic is a branching-time logic.

4.1 Computation Tree Logic

Computation Tree Logic, or CTL in short, is a branching-time temporal logic pro-
posed by Clarke and Emerson in [39] for specifying properties of reactive systems.

1In [92] several other classes are mentioned.
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The syntax and semantics of CTL are defined as below.

4.1.1 CTL Syntax

The set of CTL formulas φ is inductively defined by the following grammar:

φ ::= true | p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | φ1 ↔ φ2 | AXφ | EXφ | AFφ
| EFφ | AGφ | EGφ | AU[φ1, φ2] | EU[φ1, φ2] | AR[φ1, φ2] | ER[φ1, φ2]

where p ranges over a set of atomic formulas Prop.
The paired symbols AF,EF,AG,EG,AX,EX,AR,ER,AU and EU are called

CTL-operators or CTL-quantifiers. The operators AR,ER,AU and EU are bi-
nary operators; while the AF,EF,AG,EG,AX and EX are unary operators. Each
operator is pronounced as following:

• AGφ “on all paths globally (at every state) φ holds”;

• EGφ “there exists a path along which globally (at every state) φ holds”;

• AFφ “on all paths in some future state φ holds”;

• EFφ “there exists a path along which in some future state φ holds”;

• AR[φ1, φ2] “on all paths φ2 is released when φ1 holds”;

• ER[φ1, φ2] “there exists a path where φ2 is released when φ1 holds”;

• AU[φ1, φ2] as “on all paths φ1 holds until φ2 holds”;

• EU[φ1, φ2] as “there exists a path where φ1 holds until φ2 holds”;;

• AXφ “on all paths in the next state φ holds”;

• EXφ “there exists a path where in the next state φ holds”;

Example 20. Let Prop = {x = 2, x 6 1, x > 5} be the set of atomic propositions.
Following are some well formed CTL formulas:
(i) EF(x = 2); (ii) AG(x 6 1) ∨ (x > 5); (iii) AU[(x 6 1), (x > 5)].

A formula with either a CTL-operator or a boolean connective is constructed
from one or more well-formed CTL formulas. Such contained formulas are called
sub-formulas of the immediate top level formula. A proposition is said to be in
the immediate scope of a CTL-operator if and only if that operator is the nearest
operator quantifying that proposition.
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Definition 46 (Negation Normal Form). A CTL-formula is said to be in negation
normal form (NNF) if and only if every negation (if any) is adjacent to the atomic
propositions in the formula.

Example 21. Consider the three CTL-formulas: ¬AG p, EG(¬(p→ EF q)) and
AF AG(¬p) where p, q are atomic propositions. The first two formulas are not
in NNF, because there are negations that are adjacent to the CTL operators. The
third formula is in NNF.

Since every CTL-operator has a corresponding dual CTL-operator, any non-
NNF CTL-formula can be reduced to a semantically equivalent NNF CTL-formula
by applying the De Morgan’s laws and elimination of double negation together
with the Table 4.1. Table 4.1 summarises the equivalence between the dual CTL-
operators.

4.1.2 CTL Semantics

CTL semantics are defined with respect to a state transition system called Kripke
structure. This Kripke structure defines a temporal frame in which a CTL-formula
evaluates to either true or false depending on a particular time-point (state) in
that frame. Thus given a Kripke structure K, a CTL-formula φ is true in some
states and false in the other. The meaning of a CTL formula φ with respect to
K is the set of all states of K in which φ evaluates to true. In the following, the
Kripke structure and how a CTL-formula is evaluated w.r.t a Kripke structure are
explained.

Definition 47 (Kripke Structure). A Kripke structure K is a transition system
〈States, InitStates, Trans, Prop, Label〉 where:

• States is a (non-empty) set of states;

• InitStates ⊆ States is a set of initial states;

• Trans ⊆ States × States is a total relation on States, which relates to
each state s ∈ States one or more successor states;

• Prop is a set of atomic propositions that is closed under negation, meaning
if p ∈ Prop then ¬p ∈ Prop or vice versa;

• Label : States → 2Prop is a labelling function which labels each state s ∈
States with one or more atomic propositions that are true in that state;

A Kripke structure is also called Kripke model or simply model.
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Figure 4.1: A Kripke structure

Example 22. Consider the Kripke structure
K1 = 〈States1, InitStates1, Trans1, Prop1, Label1〉 where:

• States1 = {s0, s1, s2};

• InitStates1 = {s0};

• Trans1 = {(s0, s1), (s0, s2), (s2, s1), (s1, s2), (s2, s2)};

• the set of atomic propositions Prop1 = {x = 1, x = 0, x ≥ 2, x 6= 1, x 6=
0, x < 2};

• the state labels are as below:
Label1(s0) = {x = 0}, Label1(s1) = {x = 1} and Label1(s2) = {x ≥ 2}

Figure.4.1 shows K1, where the states are depicted as circles and the relation Trans

is denoted by arrows. There is an arrow from state s to state s
′

iff (s, s
′
) ∈ Trans.

The labelling function is denoted by the sets Label1(si) (i ∈ {0, 1, 2}), which are
positioned next to the corresponding states. The computation tree corresponding
to this system is constructed by unfolding the transition relation beginning with the
initial state. The computation tree for K1 is shown in Figure. 4.2. As the compu-
tation tree is infinite, the figure gives only a (prefix of) the possible computation
tree.

Example 23. Consider the Kripke structure from the previous example (22) and
the following CTL-formulas:

1. EF(x = 1) This formula states that “there exists a path where in future
(x=1)”. From the computation tree it is clear that this property holds in all
the states.

2. AF(x = 1) This formula, which states that “along all paths in future (x=1)”,
does not hold in any of the states.
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3. EG(x ≥ 2) This formula, which states that “there exists a path along which
globally (x=2)”, holds only in state s2.

4. AG((x = 0) ∨ (x = 1) ∨ (x ≥ 2)) This formula, which states that “on all
paths globally x remains either equal to 0 or 1 or greater than 2”, holds in
each and every state.

Definition 47 is the standard definition of a Kripke structure. But in this
dissertation, we sometimes replace the labelling function Label with a function
states : Prop→ 2States which returns the set of states where an atomic proposition
holds. This function, called the allocation function, is defined as:
states(p) = {s ∈ States | p ∈ Label(s)}.

Definition 48 (Path). A path of a model K beginning at state s is an infinite
sequence of states s0 s1 s2 . . . such that s0 = s and (si, si+1) ∈ Trans for all i > 0.

Let Sω be the set of infinite sequences and S∗ be the set of finite sequences
formed from the states of the model. For some path σ(∈ Sω) = a0 a1 a2 . . ., we use
σ[i] to denote the (i+ 1)th element of σ i.e. σ[i] = ai. Also we use σi to denote a
finite path-prefix a0 a1 . . . ai of length i+ 1. An infinite path with a finite prefix
σk is represented with σkβ where β ∈ Sω : β[0] = σ[k].

Definition 49 (Set of Paths starting in a state). The set of paths starting in state
s of a model K is defined as PK(s) = {σ ∈ Sω | σ[0] = s}.

For any Kripke structure K = 〈States, InitStates, Trans, Prop, Label〉, we
can construct an infinite computation tree as follows: (i) the root node is labelled
s0 ∈ InitStates and (ii) a node labelled s has a successor node s

′
iff (s,s

′
) ∈

Trans. This was illustrated in the Example 22.

Figure 4.2: A (portion of) the infinite tree
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Definition 50 (CTL Semantics). The CTL semantics with respect to a Kripke
structure K = 〈States, InitStates, Trans, Prop, Label〉 is given by the satisfac-
tion relation “|=” between K, one of its states s and a formula φ. If the com-
putation tree of K rooted in a state s agrees with the CTL formula φ, then the
satisfaction relation holds at that state i.e. K, s |= φ. When the specifics of the
Kripke structure K is clear from the context, we drop the K in the satisfaction
relation i.e. K, s |= φ is simply written as s |= φ. The satisfaction relation for
each CTL-operator is defined as below.

1. K, s |= true and K, s 2 false The proposition true is valid in all states,
while proposition false does not hold in any of the states.

2. K, s |= p iff s ∈ states(p) The formula p holds in a state s if the proposition
holds in the state i.e. proposition p labels the state s.

3. K, s |= ¬φ iff K, s 2 φ The formula ¬φ holds in a state s if the formula φ
does not hold in the state.

4. K, s |= φ1 ∨ φ2 iff K, s |= φ1 or K, s |= φ2 The formula φ1 ∨ φ2 holds in a
state s if at state s either formula φ1 or formula φ2 holds.

5. K, s |= φ1 ∧ φ2 iff K, s |= φ1 and K, s |= φ2 The formula φ1 ∧ φ2 holds in a
state s if and only if both the formula φ1 and formula φ2 holds in state s.

6. K, s |= AXφ iff ∀σ ∈ PK(s) : σ[1] |= φ The formula AXφ holds in state s
if and only if along all paths σ starting in s such that in the very next state
along all these paths the property φ holds.

7. K, s |= EXφ iff ∃σ ∈ PK(s) : σ[1] |= φ The formula EXφ holds in state s if
and only if there exists some path σ starting in s such that in the very next
state along this path the property φ holds.

8. K, s |= AFφ iff ∀σ ∈ PK(s) : (∃j > 0 : σ[j] |= φ) The formula AFφ holds
in state s, if and only if along all paths starting in s in some future state
(including s) the property φ holds.

9. K, s |= EFφ iff ∃σ ∈ PK(s) : (∃j > 0 : σ[j] |= φ). The formula EFφ holds in
state s, if and only if there exists a path starting in s along which in some
future state (including s) the property φ holds.

10. K, s |= AGφ iff ∀σ ∈ PK(s) : (∀j > 0 : σ[j] |= φ) The formula AGφ holds in
state s, if and only on all paths starting in s along which on all states i.e.
globally the property φ holds.
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11. K, s |= EGφ iff ∃σ ∈ PK(s) : (∀j > 0 : σ[j] |= φ) The formula EGφ holds in
state s, if and only if there exists a path starting in s where along all states
i.e. globally the property φ holds.

12. K, s |= AU[φ1, φ2] iff ∀σ ∈ PK(s) : (∃j > 0 : (σ[j] |= φ2 ∧ (∀(0 6 k < j) :
σ[k] |= φ1))) The formula AU[φ1, φ2] holds in state s if and only if along all
paths σ starting in s such that in some future state (including s) the property
φ2 holds and at all the states preceding this state, property φ1 holds.

13. K, s |= EU[φ1, φ2] iff ∃σ ∈ PK(s) : (∃j > 0 : (σ[j] = φ2 ∧ (∀(0 6 k < j) :
σ[k] |= φ1))) The formula EU[φ1, φ2] holds in state s if and only if there
exists some path σ starting in s such that in some future state (including s)
the property φ2 holds and at all the states preceding this state, property φ1

holds.

14. K, s |= AR[φ1, φ2] iff ∀σ ∈ PK(s) : (∃j > 0 : (σ[j] = φ1 ∧ (∀(0 6 k ≤
j) : σ[k] |= φ2))) The formula AR[φ1, φ2] holds in state s if and only if
along all paths σ starting in state s either in some future state (including s)
the property φ1 holds for the first time and at all the states preceding and
including that state, property φ2 holds.

15. K, s |= ER[φ1, φ2] iff ∀σ ∈ PK(s) : (∃j > 0 : (σ[j] = φ1 ∧ (∀(0 6 k ≤ j) :
σ[k] |= φ2))) The formula ER[φ1, φ2] holds in state s if and only if there
exists a path σ starting in state s along which in some future state (including
s) the property φ1 holds for the first time and at all the states preceding and
including that state, property φ2 holds.

The semantics of a CTL-formula φ is represented as [[φ]], which is the set of all
states where the formula is satisfied i.e. [[φ]] = {s ∈ States | s |= φ}. In a later
chapter (Chapter 6), we define a CTL-semantics function [[·]] : CTL→ 2States that
returns the [[φ]] for a given CTL-formula φ.

4.1.3 Important equivalences between CTL formulas

Definition 51 (Equivalent CTL-formulas). Two CTL-formulas φ and ψ are said
to be semantically equivalent to each other if any state in a model which satisfies
one of them also satisfies the other. Such an equivalence is denoted by φ ≡ ψ.

Duality between CTL-operators The CTL-operators AF,AG,AU,AR,AX
are duals of EG,EF,ER,EU,EX respectively. Because of this duality, by De Mor-
gan’s laws, we have equivalences as summarised in Table 4.1.
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φ ≡ ¬(¬φ)
AFφ ≡ ¬(EG(¬φ))
AGφ ≡ ¬(EF(¬φ))
AR[φ1, φ2] ≡ ¬EU[¬φ1,¬φ2]
AU[φ1, φ2] ≡ ¬ER[¬φ1,¬φ2]
AXφ ≡ ¬(EX(¬φ))

Table 4.1: Equivalent CTL-formulas involving dual operators

4.1.4 CTL Axioms

Also, from the CTL-semantics Definition 50, we get the following axioms (equiv-
alences), which define each of the six CTL operators in terms of itself and a next
state operator i.e. either EX or AX.

1. AFφ ≡ φ ∨ AX(AFφ)

2. AGφ ≡ φ ∧ AX(AGφ)

3. EFφ ≡ φ ∨ EX(EFφ)

4. EGφ ≡ φ ∧ EX(EGφ)

5. AU[φ1, φ2] ≡ φ2 ∨ (φ1 ∧ AX(AU[φ1, φ2]))

6. EU[φ1, φ2] ≡ φ2 ∨ (φ1 ∧ EX(EU[φ1, φ2]))

7. AR[φ1, φ2] ≡ φ2 ∧ (φ1 ∨ AX(AR[φ1, φ2]))

8. ER[φ1, φ2] ≡ φ2 ∧ (φ1 ∨ EX(ER[φ1, φ2]))

These axioms form the basis for the fixed-point characterisation of CTL se-
mantics. Such a fixed-point characterisation is the mathematical foundation for a
verification technique called Model Checking. Model checking is the topic of the
next chapter.

4.1.5 Types of CTL formulas

Depending on their syntactic structure, we differentiate between three types of
CTL formulas: (i) simple formulas; (ii) next state formulas and (ii) nested formu-
las.

Definition 52 (Simple CTL-formula). A simple CTL-formula is a CTL-formula
with exactly one of the eight CTL operators AF,EF,AG,EG,AR,ER,AU and EU.
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In Chapter 5, we present proof techniques to verify a class of simple safety and
liveness formulas.

Definition 53 (Next State CTL-formula). A next state formula is a CTL-formula
with either AX or EX as its top-level operator.

Definition 54 (Nested CTL-formula). A nested formula is a non-next state CTL-
formula with two or more CTL-operators.

In Chapter 6, we present the technique of abstract interpretation based model
checking with which arbitrary CTL formulas can be verified.

Evaluating a formula with no CTL operator can be done given a state alone;
while the simple and nested formulas can be evaluated when the paths are com-
puted. The following examples illustrate these evaluation concepts.

Example 24. Consider a state transition system STS = 〈S, S0,→〉 (of the form
defined in Chapter 3 in Definition 43) with only two state variables, identified with
x and y that are evaluated over the set of integers i.e. S = Z × Z. The (binary)
state transition relation → defined as:
(x, y)→ (x

′
, y

′
) : x ≤ 2 ∧ y ≤ 4 ∧ x′

= y ∧ y′
= y + 3

(x, y)→ (x
′
, y

′
) : x ≤ 2 ∧ y > 4 ∧ x′

= y + 1 ∧ y′
= x− 2

(x, y)→ (x
′
, y

′
) : x > 2 ∧ x′

= y − 5 ∧ y′
= y

A state si is a tuple (xi, yi) ∈ S. The path is given by
σ : (0, 0) ((0, 3) (3, 6) (1, 6) (7,−1) (−6,−1) (−1, 2) (2, 5) (6, 0) (−5, 0))ω.
The state-sequence that is marked with the super-script ω repeats infinitely often.
Collecting the states reached along a run gives the set of reachable states
SR = {(0, 0), (0, 3), (3, 6), (1, 6), (7,−1), (−6,−1), (−1, 2), (2, 5), (6, 0), (−5, 0)}.

Consider two formulas: (i) p1 = (x > 0) ∧ (y ≤ 7) and (ii) p2 = (x > −10)
that state “the value of state variable x is greater than 0 and value of y is less than
or equal to 7” and “the value of state variable x is greater than −10” respectively.
The formulas p1, p2, being void of a CTL-operator are just propositions, and can
be evaluated at any state s ∈ States given that state alone. For instance at state
s = (0, 3) formula p1 evaluates to false since s(x) = 0 ≯ 0, while p2 holds i.e.
evaluates to true.

Example 25. Given the transition system STS in Example 24, consider two more
formulas: (i) φ3 = (x = 1 ∧ y = 6) → AX(x = 7 ∧ y = −1)) and (ii) φ4 = (x =
3) → AF(x = 6 ∧ y = 0). The next state formula φ3 states that “the state (1,6)
is immediately succeeded by the state (7,-1)”; while φ4 states that “a state where
variable x equals 3 leads to a state (6,0)”.

To evaluate φ3 it is necessary that two adjacent states (temporally) along a
path be given. Such ordered adjacent states in σ are: (0, 0), (0, 3), (0, 3), (3, 6),
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(3, 6), (1, 6), (1, 6), (7,−1), . . . , (−5, 0), (0, 3). These pairs are also defined in the
transition relation.

Similarly φ4 can be evaluated if the states temporally appearing after the state
(1, 6) along all runs are given. There are finite but several such ordered pairs
of states, but we give here only those pairs where the later state is (6, 0). Such
state pairs are (0, 0), (6, 0), (0, 3), (6, 0), (3, 6), (6, 0), (1, 6), (6, 0), (7,−1), (6, 0),
(−6,−1), (6, 0), (−1, 2), (6, 0), (2, 5), (6, 0), (5, 0), (6, 0). Each pair is an abstrac-
tion of the section of a run from the first state to the second state in the pair.

Any two distinct states sj, sk appearing on a run σ are said to be temporally
ordered if the state sj appears before sk on σ or vice versa.

Example 26. The system STS of Example 24 being deterministic has only one
run:
σ = (0, 0) ((0, 3) (3, 6) (1, 6) (7,−1) (−6,−1) (−1, 2) (2, 5) (6, 0) (−5, 0))ω.
Any two instances of states along σ can be arranged as a temporally ordered pair.

Example 27. Consider two path formulas q1 and q2 from Example 25. The for-
mula ψ1 = AG q1 which says “along all runs always the state (1, 6) is immediately
followed by the state (7,−1)”. The formula ψ2 = AG q2 means “there exists a run
with a state where x = 3 precedes a state (6, 0)”. Both these formulas are safety
formulas whose sub-formulas are propositions.

4.2 Specifying Properties in CTL

Three classes of properties: Safety, Liveness and Precedence
Properties

Naively, system correctness can be stated as “a system is expected to be either
free of forbidden behaviour or possess a desired behaviour”. The features that
demarcate forbidden behaviours and those that demarcate correct behaviours need
to be formalised for specifying properties.

Formally, the system properties assert that during a system execution either
“something bad doesn’t happen” or “something good will happen”. Accordingly,
Lamport in [82] grouped properties into two classes, namely: (i) safety properties
and (ii) liveness properties. In [91], besides safety and liveness, a third class of
properties named precedence properties is mentioned.

In [2], it is proved that that any property that is neither a safety property nor
a liveness property is an intersection of safety and liveness properties. This mean
every property can be expressed as a combination of safety and liveness properties.
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4.2.1 Safety Properties

Informally, a safety property asserts that “during a system execution something bad
never happens”. In a temperature control system that maintains the temperature
between Tmin and Tmax, a safety property could be “temperature never exceeds
Tmax”, in which the proscribed state is any state with temperature exceeding Tmax.

Other examples for safety properties in a multi-process system are: mutual-
exclusion, deadlock-freedom etc. In a mutual-exclusion property, the proscribed bad
state is “two or more processes executing their critical sections simultaneously”.
In a deadlock-freedom, the proscribed state is a dead state (the state with no
successor state).

Specifying safety in CTL

In [92], the syntactic definition of a safety formula is given. That definition trans-
lates to the following in CTL.

Definition 55 (Safety property/ Safety formula). A safety formula is a CTL-
formula of the form AGφ or EGφ.

• The safety formulas of the form AGφ are called universal safety formulas.

• The safety formulas of the form EGφ are called existential safety formulas.

If ¬φ specifies an unsafe condition, then the universal (resp. existential) safety
property is specified with a formula of the form AGφ (resp. EGφ). Formula AGφ
states that “along all paths at every state φ holds”; while EGφ states that “exists
a path on which at every state φ holds”.

The safety formula AGφ is called a universal simple safety formula if the sub-
formula φ is either a an atomic proposition or a combination of two or more atomic
propositions, otherwise it is called a universal nested safety formula. Similarly
defined are an existential nested safety and an existential simple safety formula.

Strictly speaking, in the sense of safety defined by Lamport, only universal
simple safety formulas qualify to be called safety properties. The nested safety
formula if violated will not necessarily lead to an unsafe state.

Following the CTL-semantics definition, a universal simple safety formula AGp
holds in a state if there is no reachable state where ¬p holds.

Example 28. Consider two safety formulas of a floor heating system: (i) ψa =
AG(t ≤ 25) and (ii) ψb = AG((t ≥ 19 ∧ t ≤ 20) ⇒ AF(t > 20)). Formula
ψa means “always the temperature remains less than or equal to 20◦ C”, while
the formula ψb means “always globally, a state with temperature between 19 and
20◦C always is followed in future by a state where temperature is greater than
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20◦C”. Since its sub-formula ψa,1 = (t ≤ 25) is a proposition, ψa is a simple safety
formula. On the contrary ψb is a nested safety formula since the sub-formula
ψb,1 = (t ≥ 19 ∧ t ≤ 20)⇒ AF(t > 20) is a simple CTL-formula.

4.2.2 Liveness Properties

Informally, a liveness property asserts that during an execution something good
happens. In a temperature control system, one liveness property could be “even-
tually the temperature reaches T ◦max Celsius”.

Other examples for liveness properties in multi-process systems include: (i)
starvation freedom, (ii) termination. A starvation freedom property guarantees
the progress of every scheduled process. Here the good thing is making progress.
A termination property asserts that the process will terminate. Here the good
thing is termination. In the case of temperature stabilisation, the good thing is
temperature hitting a desired temperature of 25◦.

An important point about a liveness property is that every partial execution
(lacking a good thing until any point in the course of its execution) is always
remediable in future. For this reason liveness properties are called eventuality
properties.

Specifying liveness in CTL

[92] gives the canonical form of a liveness formula. That definition translates to
the following in CTL.

Definition 56 (Liveness). A liveness formula is of the form EFφ or AFφ.

• The formulas of the form AFφ are called universal liveness formulas.

• The formulas of the form EFφ are called existential liveness formulas.

If φ specifies a required good behaviour, then AFφ (or EFφ) specifies the live-
ness property.

The existential liveness formula EFφ (resp. AFφ) specifies that there exists a
path (resp. along all paths) along which in some future state φ holds.

A liveness formula with simple formulas as its sub-formula is called a nested
liveness property ; while that with propositions as its sub-formula is called a simple
liveness property. The formula AFφ is called a universal liveness property ; while
EFφ is called an existential liveness property.

Following the CTL-semantics definition, an existential simple liveness EFp
holds if and only if there exists one or more states where p holds.
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Example 29. In the temperature control system, formula AF(t = 25) specifies
a universal simple liveness property that always in future the temperature 25 is
reached; while AF(t = 25 → AG(t = 25)) is a universal nested safety property.
Replacing the top-level quantifier AF with EF results in the existential liveness
versions.

4.2.3 Precedence Properties

A precedence property asserts that during an execution “eventually something
happens and until then at all preceding states something else holds”. In a temper-
ature control system, a precedence property looks like “the temperature increases
until 25◦C is reached”. In a telephone system, “the telephone rings until the re-
ceiver is lifted off the hooks”. In a traffic signalling system, “a green signal is
followed by a yellow signal that inturn is followed by a red signal”.

A precedence property states that a property φ2 eventually holds and at all pre-
ceding states property φ1 holds. It is modelled by an infinite path σ = s0, s1, s2 . . .
if in some future state sj (j≥0) φ2 holds and at all preceding states sj (0 ≤ i < j)
φ1 holds.

Specifying precedence in CTL

A precedence property is syntactically defined as below.

Definition 57 (Precedence formula). A precedence formula is a formula of the
form AU(φ1, φ2) or EU(φ1, φ2).

• A precedence formula of the form AU(φ1, φ2) is called a universal precedence
formula.

• A precedence formula of the form EU(φ1, φ2) is called a existential precedence
formula.

The formula AU[φ1, φ2] (resp. EU[φ1, φ2]) says that along all paths (resp. exists
some path) φ2 holds in some future state and until then φ1 holds.

Example 30. In the temperature control system with a heating element and a
power on switch, whose states are modelled with x and y respectively, the formula
AU[(x = 1 ∧ y = 1 ∧ t < 25), (x = 1 ∧ y = 0 ∧ t >= 25)] defines a precedence
property.
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4.3 CTL and Hybrid systems

As explained in the previous section, the semantics of a CTL formula is given
w.r.t. a Kripke structure. Since the constraint logic program modelling an LHA
happens to be a Kripke structure, defined with constraints, the CTL formulas have
their usual meaning on the CLP model. But the LHAs, whose property we wish
to specify, are not pure discrete systems. In this section, the meaning of a CTL
formula with respect to the LHA model is presented informally.

We avoid formal presentation, for it involves considering either the topolog-
ical semantics [9] of hybrid systems or the very powerful modal logics such as
Spatial logic [109], both of which are beyond the scope of this dissertation. A for-
mal investigation into modal logics for continuous systems is undertaken in [34].
However, we can bypass these concepts of topologies and modal logics altogether,
because Alur et. al in [8] formally established that hybrid systems can be safely
abstracted with discrete systems. Here safety means the resulting discrete abstrac-
tion preserve all kinds of temporal properties present in the original hybrid system.
Thus, given a CTL formula φ, a discrete system preserving φ could be constructed.
Therefore, for this reason, in various other hybrid system verification frameworks:
(a) CTL continues to be used as a property specification language and also (b)
to verify CTL properties the continuous dynamics are abstracted with discrete
transition systems.

4.3.1 CTL formulas and the runs of an LHA

Recall from Chapter 3 Section 3.2.2, that the run of an LHA is:

σ = (l0, X0, t0)
δ0→(γ0,α0) (l1, X1, t1)

δ1→(γ1,α1) (l2, X2, t2) · · ·
For an LHA involving one or more non-deterministic discrete transitions, there
are two or more different runs. Given an LHA, the meanings for each of the CTL
operators excepting EX and AX are as below:

1. AGφ: The formula φ holds on all runs at every t ≥ tr ;

2. EGφ: The formula φ holds at every t ≥ tr along one or more runs;

3. AFφ: The formula φ holds at some point t ≥ tr along all runs;

4. EFφ: The formula φ holds at some t ≥ tr along one or more runs;

5. AU[φ1, φ2]: On all runs, φ1 holds till some time point t ≥ tr at which φ2

holds;

6. EU[φ1, φ2]: On one or more runs, φ1 holds till some time point t ≥ tr at
which φ2 holds;
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7. AR[φ1, φ2]: On all runs, φ2 holds until some time point t ≥ tr at which φ1

holds;

8. ER[φ1, φ2]: On one or more runs, φ2 holds until some time point t ≥ tr at
which φ1 holds.

where tr is called reference time or root time. This root time is inherited from
the immediate top-level operator. If the top most operator happens to be a CTL
operator, then tr = t0 for that operator; while for the inner operators it takes values
based on its immediate top-level operator. If the top most operator is a conjunction
(resp. disjunction), then for each conjunct (resp. disjunct) tr = t0. If the top most
operator is an implication (resp. equality), then the antecedent has tr = t0 while
the consequent’s root time is that instance t ≥ t0 when the antecedent evaluates to
true. Given a CTL-formula Opφ where Op ∈ {AG,EG,AF,EF,AU,EU,AR,ER},
if tr is root time for the top level CTL-operator Op, then the root times for the
sub-formulas are defined as following:

1. AGφ: ∀trφ ∈ [tr,∞];

2. EGφ: ∀trφ ∈ [tr,∞];

3. AFφ: ∃trφ ∈ [tr,∞];

4. EFφ: ∃trφ ∈ [tr,∞];

5. AU[φ1, φ2] : ∀trφ1
∈ [tr, trφ2

) and trφ2
≥ tr is the first time when φ2 holds;

6. EU[φ1, φ2] : ∀trφ1
∈ [tr, trφ2

) and trφ2
≥ tr is the first time when φ2 holds;

7. AR[φ1, φ2] : ∀trφ2
∈ [tr, trφ1

] and trφ1
≥ tr is the first time when φ1 holds;

8. ER[φ1, φ2] : ∀trφ2
∈ [tr, trφ1

] and trφ1
≥ tr is the first time when φ1 holds.

Though the conditions like t ≥ tr appear, it should not raise philosophical
concerns about the continuum of time etc., because as discussed in [94], for a
given temporal formula, we only need to consider the discrete instances when the
propositions appearing in the formula evaluate to true. This is explained later.
Also, in the above, each inequality involving times are evaluated along the same
time branch.

Example 31. Of an LHA consider three CTL-formulas: AFp, AG(p→ AF(q∨r))
and AF(EGp) where p, q, r are propositions. The formula AFp specifies that on
every run, there is some future where p holds. The nested formula AG(p→ AF(q∨
r)) means that along every run globally whenever p holds on every run passing
through that state in some future either q or r holds. The third formula states that
along all paths from some future onwards there exists a run where p holds for ever.
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To verify these formulas against an LHA, it is not necessary to consider the
entire continuum during the delay periods on a run, rather it is sufficient to consider
only one instance in each delay duration during which the individual propositions
(appearing in the CTL formula to be verified) remain invariant. This means, a
formula φ, can be verified with our CLP model, iff every run of the CLP model
preserves at least one state from every delay duration where a proposition (in
φ) remains invariant. Recall that our CLP model’s run includes only one state
(corresponding to some time instant) from each delay segment in the run. Now
recall that a delay happens while staying in a location, on which an invariant
is defined. What this translates to is “if each invariant (corresponding to each
location of an LHA) entails each proposition appearing in a CTL-formula φ then
the CLP model’s run preserves the LHA’s property φ”.

The procedure outlined in Algorithm 2 in Chapter 3 performs exactly this
entailment check. If this check fails i.e. the algorithm returns false, then the
original LHA needs to be refined. Each location li where a proposition (in the
formula φ) entails invariant invi is partitioned into two or more locations locations
so that the (refined) invariants corresponding to the refined locations satisfy the
entailment check. This refinement is repeated for each proposition. Since the
number of propositions in a CTL-formula is finite, the refinement will always
terminate. Recall, as explained in the previous chapter, that our definition of the
transition relation results in an infinite number of runs corresponding to every
linear run in an LHA. On every CLP run there is at least one state from every
location. So having refined the LHA model by introducing refined locations with
invariants corresponding to the propositions in a given CTL-formula, every run
of our model preserves one state on which a proposition remains invariant. Thus
model checking results for the CTL formulas on our CLP model do hold on the
LHA model.

Summary

In this chapter, we introduced the property specification language of CTL and how
different classes of properties are specified in this language. The next chapter de-
fines verification techniques to verify a class of safety and liveness CTL-properties.
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Chapter 5

Practical Proof Techniques I

This and the following chapter present practical methods to verify temporal prop-
erties. In this chapter we focus on a restricted class of CTL formulas, while the
next chapter focuses on arbitrary CTL formulas.

The proof phase of a formal verification involves generating evidence that for-
mally establishes the correctness of a system with respect to a property. In so-
called automated formal verification, the proof phase is completely automated i.e.
given the system specification and the property, the verifier says either YES if the
system possesses the property or NO otherwise. This chapter presents a static
analysis-based approach for automatic formal verification.

Essentially, in this chapter, the proof phase comprises two steps. First is the
computation step where the set of behaviours of a system is computed. Second
is the query step where it is checked whether the computed set of behaviours
possesses the desired property. But computation of all possible behaviours, which
are infinite structures is in general impossible. However, certain properties can
be verified by computing an abstraction of the total set of behaviours. In this
chapter, we consider the set of reachable states or an over approximation of this
set in the computation step.

Starting with the constraint logic programs representing LHA models, we com-
pute the set of reachable/reaching states as the minimal model of the respective
drivers introduced in Section 3.3.4. We noted that the minimal model of the re-
spective programs captures the set of reachable states from an initial state or the
set of reaching states to a given target state, respectively.

Let P be the constraint logic program representing a given LHA Sys; the min-
imal model M[[P ]] capturing the set of reachable or reaching states is represented
by constraint facts. In the second proof step, which is the querying step of veri-
fication, M [[P ]] is queried with a suitable goal. Depending on the property to be
proved, we might be seeking a presence or lack of a solution to this goal.

In this chapter, we show that universal simple safety and existential simple
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liveness properties can be verified with this two step proof method based on com-
puting and querying the set of reachable states and/or the set of reaching states.
However, for some systems and/or CLP representations, the computation step
might not terminate within a predetermined time and/or finite memory. Such
cases are then handled by abstract interpretation, where instead of a concrete
minimal model an abstract minimal model is computed by interpreting the logic
program over abstract domain(s). This abstract minimal model (which being an
over approximation contains reachable/reaching states that are not visited by the
concrete system) is queried. As will be explained latter, whether or not abstraction
is useful depends on the property.

Chapter Overview

- Section 5.1 presents two general schemes for verifying certain kinds of simple
CTL properties.

- Section 5.2 instantiates the two general schemes presented in the previous
section for proving universal simple safety properties.

- Section 5.3 instantiates the two general schemes for proving existential live-
ness properties.

- Section 5.4 explains the concept of refining a property.

5.1 Verification of simple CTL properties

In Chapter 3, it is shown how an LHA is translated into a CLP program. This CLP
program could then be analysed to verify the LHA represented by it. In Chapter
2, it is explained how to compute the minimal model of constraint logic programs
(Definitions 31, 33). Furthermore, in cases where a finitely representable model
cannot be computed, following Section 2.4 an over approximation of the model can
be computed. The minimal model of constraint logic programs is computed using
the iterative Algorithm 1. In this section, we show how certain CTL properties
can be verified directly using such minimal models or approximations.

In Section 3.3.4, we showed two drivers for encoding an LHA, namely: (i)
the reachable states driver rstate for forwards reasoning, (ii) the reaching states
driver qstate for backwards reasoning.

As shown in Section 2.3.2, the models can be represented in extensional form
as constrained facts. For instance, the clause rstate(X) ← X ≤ 2, X ≥ −2
is a constrained fact. In this form, the models can be queried using a standard
CLP(Q)system. For instance, to check whether rstate(3/2) has a solution in the
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model, the model (of constraint logic program based on rstate driver) is queried
with the goal ← rstate(X), 2 ∗X = 3.

In the following, we outline two proof methods capable of handling a class of
CTL formulas. The first method is for the reachable states driver based represen-
tation and the second one is for the reaching states driver based representation.

5.1.1 Method based on reachable states.

Given an LHA model of a system Sys and a CTL formula φ, the method consists
of the following steps:

1. Translation of LHA Sys into a CLP program P r
Sys, which is the CLP repre-

sentation of Sys based on the rstate driver as explained in Section 3.3.4;

2. Translation of formula φ into one or more CLP goals of the form ← q where
q is an atomic proposition;

3. Computation of the minimal model M[[P r
Sys]] or the abstract model Ma[[P r

Sys]];

4. Verification of the formula φ by querying the (approximate) model with the
obtained queries.

5.1.2 Method based on reaching states.

Given an LHA model of a system Sys and a CTL formula φ, this method consists
of the following steps:

1. Translation of sub-formulas of φ into one or more CLP clauses of the form
qstate(X̄) ← cq(X̄) where cq(X̄) is a linear constraint representing the
target state;

2. Translation of LHA Sys into a CLP program P q
Sys, which is the CLP repre-

sentation of Sys based on the qstate driver as explained in Section 3.3.4;

3. Computation of the minimal model M[[P q
Sys]] or the abstract model Ma[[P q

Sys]];

4. Verification of the formula φ by querying the (approximate) model for the
initial states.

In the next sections, we show how to verify universal simple safety and exis-
tential simple liveness properties using these two methods.
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5.2 Universal simple safety

5.2.1 Method based on reachable states.

We now instantiate the rstate method, for φ = AGp where p is an atomic propo-
sition.

Translation of LHA. The LHA Sys is translated into the rstate based con-
straint logic program P r

Sys. This translation follows the schema presented in Table
3.1.

Translation of formula. The atomic proposition p is first negated and then
the negated proposition ¬p is translated into a CLP query of the form:

← rstate(X̄), c¬p(X̄)
where c¬p(X̄) is a linear constraint encoding ¬p. Recall that any atomic proposi-
tion in Prop can be characterised as a linear constraint on the state variables of
the system Sys.

Computation of minimal model. The minimal model M[[P r
Sys]] is computed

using the fixed point algorithm. If the algorithm does not terminate within a
predefined (finite) amount of time, then the abstract model Ma[[P r

Sys]] is computed.

Verification. The minimal model is then queried with the goal:
← rstate(X̄), c¬p(X̄).

Depending on which model (concrete or abstract) is queried we have following
cases.

1. Concrete minimal model: If M[[P r
Sys]] has no solution for the query, then the

property AGp holds else the property fails;

2. Abstract minimal model:

(a) If Ma[[P r
Sys]] has no solution for the query, then the property AGp holds;

(b) If Ma[[P r
Sys]] has a solution for the query, then nothing can be concluded

about the correctness of the property AGp;

Correctness: The correctness of the above method is based on the CTL-semantics
(Definition 50) of the safety property AGp. Given a Kripke structure K, AGp holds
at a state s0, i.e. K, s0 |= AGp iff ∀σ ∈ Pk(s0) : ∀i ≥ 0 : σ[i] |= p where Pk(s0) is
the set of paths originating in state s0. This means that “AGp holds if and only if
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rstate([X2,Y2]) ←
transition([X1,Y1],[X2,Y2]),

rstate([X1,Y1]).

rstate(S0) ←
init([X0,Y0]).

init([0,0]).

transition([X1,Y1],[X2,Y2]) ←
X1 > 2,

X2 = Y1-5,

Y2 = Y1.

transition([X1,Y1],[X2,Y2]) ←
X1 =< 2,

Y1 =< 4,

X2 = Y1,

Y2 = Y1+3.

transition([X1,Y1],[X2,Y2]) ←
X1 =< 2,

Y1 > 4,

X2 = Y1+1,

Y2 = X1-2.

Figure 5.1: The constraint logic program encoding Sys24.

the proposition p holds on each and every state appearing on every path originat-
ing in the initial state s0”. This translates to checking that p holds at every state
reachable from the initial state. Thus in the above method, in the verification step
we query the minimal model, which encodes the set of reachable states, for a state
where ¬p holds. Thus universal simple safety can be verified by checking that ¬p
holds at none of the reachable states i.e. ← rstate(X̄), c¬p(X̄) fails. When the
concrete minimal model cannot be computed, we compute the abstract minimal
model. Since the abstract minimal model is an over approximation of the concrete
minimal model, the absence of an unsafe state in the set of abstract reachable
states also implies their absence in the concrete reachable state space. However if
there is a solution, we cannot conclude whether the safety property holds or not.

This method is illustrated in the following example (Example 32).

Example 32. Consider the transition system from the Example 24 and a property
AG(−6 ≤ x ≤ 7). Its CLP encoding P r

Sys based on the reachable states driver is as
shown in Figure 5.1.
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rstate([X,Y]) ← 1*X=0,1*Y=0.

rstate([X,Y]) ← 1*X=0,1*Y=3.

rstate([X,Y]) ← 1*X=3,1*Y=6.

rstate([X,Y]) ← 1*X=1,1*Y=6.

rstate([X,Y]) ← 1*X=7,1*Y= -1.

rstate([X,Y]) ← 1*X= -6,1*Y= -1.

rstate([X,Y]) ← 1*X= -1,1*Y=2.

rstate([X,Y]) ← 1*X=2,1*Y=5.

rstate([X,Y]) ← 1*X=6,1*Y=0.

rstate([X,Y]) ← 1*X= -5,1*Y=0.

Figure 5.2: The constrained atoms corresponding to rstate predicate in M[[P r
Sys]]

The minimal model of this program is shown in Figure 5.2. In the verification
step, since the negation of the proposition −6 ≤ x ≤ 7 is the disjunction −6 >
x ∨ x > 7, M[[P r

Sys]] is queried with the goals ← rstate(X, ), X < −6 and ←
rstate(X, ), X > 7.

The minimal model of Figure 5.2 defines:
M[[P r

Sys]] = {rstate([0, 0]), rstate([0, 3]), rstate([3, 6]),
rstate([1, 6]), rstate([7,−1]), rstate([−6,−1]),
rstate([−1, 2]), rstate([2, 5]), rstate([6, 0]), rstate([−5, 0]), }. It is clear that
both goals fail, thus the system is verified to hold the safety property AG(−6 ≤
x ≤ 7).

In the above example, since P r
Sys has three predicates rstate/1, transition/2

and init/1, M[[P r
Sys]] usually contains constrained atoms corresponding to all the

three predicates. But here, before computing the minimal model, we specialised
P r

Sys by unfolding the calls to transition/2 and init/1. Hence the minimal model
M[[P r

Sys]] only contains constrained atoms corresponding to rstate/1.

5.2.2 Method based on reaching states.

We now instantiate the qstate method, for φ = AGp where p is an atomic propo-
sition.

Translation of formula: The atomic proposition p is first negated and then the
negated proposition ¬p is translated into a CLP clause of the form target(X̄)←
c¬p(X̄) where c¬p(X̄) is a linear constraint encoding ¬p. Thus we defined the target
state as any state violating the proposition p. These target states are unsafe states.
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Translation of LHA: The LHA Sys is translated into the qstate based con-
straint logic program P q

Sys. This translation follows the schema presented in Table
3.1. Recall that a qstate driver is with respect to a particular target state, which
is specified with the predicate target/1. We already specified this in the previous
step.

Computation of minimal model: The minimal model M[[P q
Sys]] is computed

using the fixed point algorithm. If the algorithm does not terminate within a
(predefined) finite time or memory, then the abstract model Ma[[P r

Sys]] is computed.

Verification: The minimal model is then queried with the goal:
← rstate(X̄), cinit(X̄)

where cinit(X̄) is the constraint characterising the set of initial states in the LHA
Sys. Depending on which model (concrete or abstract) is queried we have the
following cases.

1. Concrete minimal model: If M[[P q
Sys]] has no solution for the query, then the

property AGp holds else the property fails;

2. Abstract minimal model:

(a) If Ma[[P q
Sys]] has no solution for the query, then the property AGp holds;

(b) If Ma[[P q
Sys]] has a solution for the query, then nothing can be concluded

about the validity of AGp.

Correctness: In backward reasoning, checking universal simple safety translates
to proving that none of the initial states reach the states where safety is violated.
Thus we compute the reaching states of a target state, which is marked by the
negated proposition ¬p, and the resulting set of reaching states is queried for
the initial states. In the cases where abstraction of reaching states is computed,
since the abstraction is always an over approximation of the set of the concrete
reaching states, the presence of initial states in the abstraction does not guarantee
their presence in the set of concrete reaching states. Thus, in the reaching states
method, we cannot establish the correctness of universal simple safety properties
with abstraction.

This method is illustrated with the Example 33.

Example 33. Now we verify the same system and property from the previous ex-
ample but with the reaching states method. Figure 5.3 shows the program P q

Sys.
The negation of the propositional part of AG(−6 ≤ x ≤ 7) is ¬p = x < −6 ∨ x >
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qstate([X1,Y1]) ←
transition([X1,Y1],[X2,Y2]),

qstate([X2,Y2]).

qstate([X,Y]) ←
target([X,Y]).

target([X, ]) ← X > 7.

target([X, ]) ← X < -6.

transition([X1,Y1],[X2,Y2]) ←
X1 > 2,

X2 = Y1-5,

Y2 = Y1.

transition([X1,Y1],[X2,Y2]) ←
X1 =< 2,

Y1 =< 4,

X2 = Y1,

Y2 = Y1+3.

transition([X1,Y1],[X2,Y2]) ←
X1 =< 2,

Y1 > 4,

X2 = Y1+1,

Y2 = X1-2.

Figure 5.3: The CLP representation of Sys24 with the qstate driver.

7. Thus we define the target state as any state satisfying this negated proposi-
tion. Then we compute the minimal model M[[P q

Sys]]. Figure 5.4 shows the con-
strained atoms contained in model M[[P q

Sys]]. Since the initial state is (0, 0) i.e.
a state where X = 0 ∧ Y = 0 holds, we query the minimal model with the goal
← qstate([X, Y ]), X = 0, Y = 0. Since there is no solution for this query the
safety property AGp holds.

5.3 Existential simple liveness

5.3.1 Method based on reachable states

Recall (from Section 4.2.2) that the existential simple liveness property is specified
with the CTL formula EFp where p is an atomic proposition. We now instantiate
the rstate method, for φ = EFp.
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qstate([X,Y]) ← -1*X>6.

qstate([X,Y]) ← 1*X>7.

qstate([X,Y]) ← -1*Y>1,1*X>2.

qstate([X,Y]) ← 1*Y>12,1*X>2.

qstate([X,Y]) ← -1*X>= -2,-1*Y>6.

qstate([X,Y]) ← -1*X>= -2,1*Y>6.

qstate([X,Y]) ← 1*X>2,-1*Y>= -7,1*Y>6.

qstate([X,Y]) ← -1*X> -1,1*Y>4.

qstate([X,Y]) ← 1*X>2,-1*Y> -6,1*Y>4.

qstate([X,Y]) ← -1*X>= -2,-1*Y>= -4,1*Y>3.

qstate([X,Y]) ← 1*X>2,-1*Y>= -4,1*Y>3.

qstate([X,Y]) ← -1*X>= -2,-1*Y> -3,1*Y>2.

qstate([X,Y]) ← -1*X>= -2,-1*Y>= -1,1*Y>0.

qstate([X,Y]) ← 1*X>2,-1*Y> -3,1*Y>2.

qstate([X,Y]) ← 1*X>2,-1*Y>= -1,1*Y>0.

qstate([X,Y]) ← -1*X>= -2,-1*Y>0,1*Y> -1.

qstate([X,Y]) ← -1*X>= -2,-1*Y>=2,1*Y> -3.

qstate([X,Y]) ← 1*X>2,-1*Y>0,1*Y> -1.

qstate([X,Y]) ← -1*X>= -2,-1*Y>3,1*Y> -4.

qstate([X,Y]) ← -1*X>= -2,-1*Y>=5,1*Y> -6.

qstate([X,Y]) ← 1*Y>4,-1*X> -2,1*X>1.

qstate([X,Y]) ← -1*X>= -2,-1*Y> -2,1*Y>1.

qstate([X,Y]) ← 1*X>2,-1*Y> -2,1*Y>1.

qstate([X,Y]) ← -1*X>= -2,-1*Y>1,1*Y> -2.

qstate([X,Y]) ← -1*X>= -2,-1*Y>4,1*Y> -5.

Figure 5.4: The constrained atoms corresponding to qstate predicate in M[[P q
Sys]]

Translation of LHA: The LHA Sys is translated into the rstate based con-
straint logic program P r

Sys. This translation follows the schema of Table 3.1.

Translation of formula: The atomic proposition p is translated into a CLP
query of the form← rstate(X̄), cp(X̄) where cp(X̄) is a linear constraint encoding
the proposition p.

Computation of minimal model: The minimal model M[[P r
Sys]] is computed

using the fixed point algorithm. If the algorithm does not terminate within a
predefined (finite) amount of time, then the abstract model Ma[[P r

Sys]] is computed.
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Verification: The minimal model is then queried with the goal:
← rstate(X̄), cp(X̄).

Depending on which model (concrete or abstract) is queried we have the following
cases.

1. Concrete minimal model: If M[[P r
Sys]] has a solution for the query, then the

property EFp holds else the property fails;

2. Abstract minimal model:

(a) If Ma[[P r
Sys]] has no solution for the query, then the property EFp fails;

(b) If Ma[[P r
Sys]] has a solution for the query, then nothing can be said about

the correctness of the property EFp;

Correctness: The correctness of the above method is based on the definition for
the liveness property EFp (Definition 56). The existential simple liveness holds
i.e. K, s0 |= EFp iff ∃σ ∈ PK(s0) : ∃i ≥ 0 : σ[i] |= p, which means there exists
a reachable state where p holds. Thus in the above method, the reachable states
is computed as the minimal model M[[P r

Sys]], which is queried for a state where p
holds with the goal ← rstate(X̄), cp(X̄). If this query succeeds unconditionally,
then p holds in the (concrete) reachable state space, which implies that EFp holds.
If the query fails the property does not hold. We later discuss the case where the
goal succeeds with residual constraints.

In the approximated reachable state space, since we over approximate the
reachable states, the absence of a state where p fails means EFp fails.

This method is illustrated in the following example (Example 34).

Example 34. Of the same system in the previous example (Example 33), consider
the existential liveness formula φl = EF (X = 1) ∧ (Y = 6), which means “there
exists a path along which the state (1,6) is reached”. This property can be verified
by computing the concrete minimal model.

In the reachable driver method, the minimal model M[[P r
Sys]] of Figure 5.2 is

queried with the goal rstate([X, Y ]), X = 1, Y = 6. Since this query has a solution
i.e. rstate(1, 6) ∈ M[[P r

Sys]], the property φl holds.

5.3.2 Method based on reaching states

We now instantiate the qstate method, for φ = EFp.

Translation of formula: The atomic proposition p is translated into a CLP
clause of the form target(X̄)← cp(X̄) where cp(X̄) is a linear constraint encoding
p. That is we defined the states where p holds as the target states.
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Translation of LHA: The LHA Sys is translated into the qstate based con-
straint logic program P q

Sys. This translation follows the schema presented in Table
3.1. Recall that a qstate driver is defined with respect to a particular target state,
which is specified with the predicate target/1. We already specified this in the
previous step.

Computation of minimal model: The minimal model M[[P q
Sys]] is computed

using the fixed point algorithm. If the algorithm does not terminate within a
predefined (finite) amount of time, then an abstract model Ma[[P r

Sys]] is computed.

Verification: The minimal model is then queried with the goal:
← rstate(X̄), cinit(X̄)

where cinit(X̄) is the constraint characterising the set of initial states in the LHA
Sys. Depending on which model (concrete or abstract) is queried we have the
following cases.

1. Concrete minimal model: If M[[P q
Sys]] has a solution for the query, then the

property EFp holds (with that state as initial state) else the property fails;

2. Abstract minimal model:

(a) If Ma[[P q
Sys]] has no solution for the query, then the property EFp fails;

(b) If Ma[[P q
Sys]] has a solution for the query, then nothing can be concluded

about the correctness of the property EFp;

Correctness: While reasoning backwards, checking existential livenessEFp tran-
slates to checking that from the initial states a state where p holds is reachable. If
the initial states are included in M[[P q

Sys]], which is the set of concrete states reach-
ing a target state where p holds, then the property EFp holds. This inclusion
is checked by the unconditional success of the goal ← rstate(X̄), cinit(X̄). We
consider in a later section the case where the goal succeeds with a residual con-
straint. In the case of Ma[[P q

Sys]] where an abstract set of states is computed and if
it includes the initial states then nothing can be concluded about the correctness
of the existential simple liveness.

This method is illustrated in the following example (Example 35).

Example 35. To verify the same property in the reaching driver method, we define
the state (1, 6) as target state. The resulting program is same as the program of
Figure 5.3 except for the definition of predicate target/1. It is replaced with the
following definition:
target([X, Y ])← X = 1, Y = 6. For this program, the concrete model computing
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algorithm does not terminate. Therefore we compute the abstract minimal model
Ma[[P q

Sys]] = {qstate(X, Y ) ← true}, which means there are no constraints on X
and Y. Since Ma[[P q

Sys]] is always an over approximation of M[[P q
Sys]], though the

initial state qstate(X, Y ) ← X = 0, Y = 0 has a solution in Ma[[P q
Sys]] nothing

can be concluded about the correctness of the property.

As seen in the above examples (Examples 35, 34), for some systems, the reach-
able states method might fare better than the reaching states method and vice
versa.

5.4 Refinement of system or a property

In the above instantiations of the two methods, there were verification cases where
we could not conclude whether a property holds or not. For example, in the
verification of property AGp based on the reachable states driver, step 2(b) is one
such case. The results from these inconclusive cases can be exploited to either
refine the property or strengthen the initial conditions of the system.

5.4.1 Universal simple liveness

Method based on reachable states

Recall that to verify AGp using an abstract minimal model, in the method based
on reachable states, the abstract minimal model is queried for the states where
¬p holds. That is, if P r

Sys is the constraint logic program encoding the LHA
Sys with the reachable states driver, then Ma[[P r

Sys]] is queried with the goal ←
rstate(X̄), c¬p(X̄). If there are solutions to this goal then nothing can be con-
cluded about the correctness of AGp. Let cp′(X̄) be the constraint that captures
these solutions. Say this linear constraint is characterised by a proposition p′, then
we define a refined property AG(p ∨ p′). Such a refined property, which is weaker
than the original safety property, holds on the system.

Method based on reaching states:

Recall that to verify AGp using an abstract minimal model, in the method based
on the reaching states driver, a target state is defined as any state where ¬p holds;
then the minimal model of the constraint logic program representing the system
with the reaching states driver is queried for the initial states. That is, if P q

Sys is
the constraint logic program encoding the LHA Sys with the reaching states driver,
then Ma[[P q

Sys]] is queried with the goal← rstate(X̄), cinit(X̄). If there are solutions
to this goal then nothing can be concluded about the correctness of AGp. Let
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cinit′(X̄) be the constraint that captures these solutions. Say this linear constraint
is characterised by a proposition init′, then the initialisation init is strengthened
as init ∧ ¬init′. The safety property AGp holds on such a strengthened system.

5.4.2 Existential simple liveness

In a similar way, we could exploit the results from the cases where an existential
liveness property fails. However this is restricted to the cases involving the concrete
minimal model.

Method based on reachable states:

Recall that to verify EFp with the concrete minimal model, in the method based
on reachable states, the model is queried for the states where ¬p holds. That is,
if P r

Sys is the constraint logic program encoding the LHA Sys with the reachable
states driver, then Ma[[P r

Sys]] is queried with the goal ← rstate(X̄), c¬p(X̄). If
there are solutions to this goal but with a residual constraint, then nothing can
be concluded about the correctness of EFp. Let cp′(X̄) be the residual constraint.
Say this linear constraint is characterised by a proposition p′, then we define a
refined property EF (p ∧ p′). Such a refined property, which is stronger than the
original liveness property, holds on the system.

Method based on reaching states

Recall that to verify EFp with a concrete minimal model, in the method with
reaching states driver, the minimal model is queried for the initial states. That is,
if P q

Sys is the constraint logic program encoding the LHA Sys with the reachable

states driver, then M[[P q
Sys]] is queried with the goal ← rstate(X̄), cinit(X̄). If

the goal has solutions with residual constraints, then nothing can be concluded
about the correctness of EFp. Let cinit′(X̄) be the residual constraint. Say this
linear constraint is characterised by a proposition init′, then we strengthen the
system’s initialisation as init ∧ init′. Now the system with such a strengthened
initial condition possesses the property EFp.

Summary

In this chapter, we saw methods to prove formulas of the form AGp and EFp that
make use of minimal models of CLP programs capturing reachable and reaching
states of a system. These methods make direct use of CLP querying. In cases
where the desired properties cannot be proved, we can use the results of the CLP
query either to strengthen the initial conditions or to modify the property so that
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it becomes provable. We also saw how over approximations (abstract minimal
models) can be used to prove universal safety properties.

In the next chapter, we present a proof method for arbitrary CTL formulas.
This method will make use of the techniques of abstract interpretation and model
checking.
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Chapter 6

Practical Proof Techniques II

The proof methods described in the previous chapter were restricted to simple
properties alone. This chapter describes a method to prove nested properties.
This proof method has its basis in the technique of model checking and exploits
the framework of abstract interpretation. In contrast to most previous work on
abstract model checking, the application of the theory of abstract interpretation
is completely standard, and gives results for all CTL properties.

Model checking [106, 23, 118] is a verification technique to automatically verify
temporal properties of state transition systems. Only model checking of finite
state systems is decidable. But the state transition systems underlying hybrid
systems are seldom finite. Therefore, to model-check such infinite state systems, it
becomes necessary to finitely represent their state space. Abstraction is a technique
for abstracting infinite state systems where a finite or infinite number of original
states are collectively represented with a single abstract state. Besides reduction
in state space, abstraction also induces information loss1. Therefore, due to such
information loss, abstraction based analyses in general are not accurate. Although
inaccurate, such abstraction-based analyses, when coined appropriately, provide
sufficient precision to prove both the safety and liveness properties.

Model checking is all about checking whether a transition system is a model of
a given temporal formula. This involves computing the set of states [[φ]] where the
temporal formula φ holds and checking whether the initial state(s) InitStates

of the system is part of the computed set i.e. InitStates ⊆ [[φ]] ⇒ M |= φ. In
this dissertation, we consider the temporal language of Computation Tree Logic
(CTL) as the property specification language. This chapter focusses on CTL model
checking.

Cousot and Cousot [27, 26] proposed the framework of Abstract Interpreta-

1Here the information that is lost is the ability to distinguish between the original states that
are now jointly represented.
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tion, which formalises the abstraction techniques. Though the abstraction based
analyses are approximate, this framework guarantees sound but incomplete model
checking of CTL. In abstraction interpretation based analyses, first an abstract
domain is defined and then so called Galois connections are defined. Given a con-
crete domain C and an abstract domain A, which are lattices, a Galois connection
consists of two functions: one called the abstraction function α : C → A and
another called the concretisation function γ : A → C. Then the actual analysis
is carried out on the abstract domain. Owing to the Galois connections, the re-
sult from such abstract analysis will always be a safe approximation of the actual
result, had the actual analysis been possible.

In our case, model checking is the analysis and the infinite state space is the
concrete domain. In essence, the language of CTL will be interpreted over an
abstract domain using an interpretation function constructed from a Galois con-
nection. Consequently, abstract model checking returns a set of abstract states
[[φ]]a, which, because of the framework, for any CTL-formula φ in negated normal
form, is always an over-approximation of the set of concrete states [[φ]] where φ
holds i.e. γ([[φ]]a) ⊇ [[φ]]2. Thus the absence of initial states InitStates in an over-
approximation ensures its absence in the actual set i.e. InitStates * γ([[φ]]a)⇒
InitStates * [[φ]] ⇒ M 2 φ. Since M 2 φ ⇒ M |= ¬φ, abstract interpretation
based model checking analysis is accurate in refuting any property ¬φ. And since a
negation of any CTL formula can be reduced into NNF, the abstract interpretation
based model checking is accurate in proving φ.

6.1 CTL Model checking

CTL Model checking is the process of computing an answer to the question of
“whether a Kripke structure K = 〈States, Trans, InitStates, Label, Prop〉 mod-
els a CTL formula φ”. This model checking question translates to checking whether
∀s ∈ InitStates : M, s |= φ where φ is a well formed CTL formula. Thus CTL
model checking involves: (i) computing the set of states [[φ]] ⊆ States where the
CTL formula φ holds and (ii) checking whether this set contains all the initial
states of K i.e. InitStates ⊆ [[φ]]. If InitStates ⊆ [[φ]] then K models φ i.e.
∀s ∈ InitStates : M, s |= φ meaning that K possesses the property φ. Otherwise
K does not possess the property φ.

We define a function [[·]] : CTL → 2States that returns the set of states where
the CTL-formula, which is in negation normal form (NNF), holds. This function,
called the CTL-semantics function, is specific to a given Kripke structure. “Model
checking algorithm” is the algorithmic incarnation of this function only.

2Here γ is an interpretation for [[φ]]a in the same domain as [[φ]].
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Before defining the CTL-semantics function, we define three functions: (i)
pred∃ : 2States → 2States called the Predecessor-exists function; (ii) pred∀ : 2States →
2States called the Predecessor-for-all function and (iii) states : Prop→ 2States called
the Allocation function. These three functions are specific for a given Kripke
structure K = 〈States, Trans, InitStates, Label, Prop〉.

Definition 58 (pred∃ : 2States → 2States). Given a Kripke structure K, the
predecessor-exists function pred∃ : 2States → 2States is defined as:
pred∃(S

′) = {s | ∃s′ ∈ S ′ : (s, s
′
) ∈ Trans}.

Definition 59 (pred∀ : 2States → 2States). Given a Kripke structure K, the
predecessor-forall function pred∀ : 2States → 2States is defined as:
pred∀(S

′
) = pred∃(S

′
)\pred∃(compl(S

′
)). Here the function compl(X) = States\X

is the usual set complement function with set States as the universe.

Informally, given a set of states S ′ ⊆ States of a Kripke structure K, pred∃(S
′)

returns the set of states having at least one of their successors in S ′, while pred∀(S
′
)

returns the set of states having all of their successors in S
′
.

Definition 60 (states : Prop→ 2States). Given a Kripke structure K, the alloca-
tion function states : Prop→ 2States is defined as:
states(p) = {s ∈ S | p ∈ Label(s)}.

Informally, given an atomic proposition p ∈ Prop and Kripke structure K,
states(p) returns the set of states where p holds.

Definition 61 (CTL-semantics function). Given a Kripke structure K = 〈States,
Trans, InitStates, Label, Prop〉, the semantic function [[.]] : CTL → 2States is
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recursively defined as below.

[[true]] = States

[[false]] = ∅
[[p]] = states(p)
[[¬p]] = states(¬p)
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]
[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[AXφ]] = pred∀([[φ]])
[[EXφ]] = pred∃([[φ]])
[[AFφ]] = µZ.f(AF,φ)(Z) where f(AF,φ)(Z) = [[φ]] ∪ pred∀(Z)
[[EFφ]] = µZ.f(EF,φ)(Z) where f(EF,φ)(Z) = [[φ]] ∪ pred∃(Z)
[[AGφ]] = νZ.f(AG,φ)(Z) where f(AG,φ)(Z) = [[φ]] ∩ pred∀(Z)
[[EGφ]] = νZ.f(EG,φ)(Z) where f(EG,φ)(Z) = [[φ]] ∩ pred∃(Z)
[[AR[φ1, φ2]]] = νZ.f(AR,[φ1,φ2])(Z)

where f(AR,[φ1,φ2])(Z) = [[φ2]] ∩ ([[φ1]] ∪ pred∀(Z))
[[ER[φ1, φ2]]] = νZ.f(ER,[φ1,φ2])(Z)

where f(ER,[φ1,φ2])(Z) = [[φ2]] ∩ ([[φ1]] ∪ pred∃(Z))
[[AU[φ1, φ2]]] = µZ.f(AU,[φ1,φ2])(Z)

where f(AU,[φ1,φ2])(Z) = [[φ2]] ∪ ([[φ1]] ∩ pred∀(Z))
[[EU[φ1, φ2]]] = µZ.f(EU,[φ1,φ2])(Z)

where f(EU,[φ1,φ2])(Z) = [[φ2]] ∪ ([[φ1]] ∩ pred∃(Z))

Here:

• φ, φ1, φ2 are CTL-formulas in NNF;

• pred∃, pred∀ and states are functions as defined in Definitions 58, 59 and 60,
respectively;

• the functions f(AF,φ), f(EF,φ), f(AG,φ), f(EG,φ), f(AR,[φ1,φ2]), f(ER,[φ1,φ2]), f(AU,[φ1,φ2])

and f(EU,[φ1,φ2]) are called CTL characteristic functions and are of type
2States → 2States;

• µZ.(F (Z)) stands for the least fixed point of the function λZ.F (Z);

• νZ.(F (Z)) stands for the greatest fixed point of the function λZ.F (Z);

In the above definition, the fixed point functions of the formulas AFφ, EFφ,
AGφ, EGφ, AR[φ1, φ2], ER[φ1, φ2], AU[φ1, φ2] and EU[φ1, φ2] are derived directly
from the CTL axioms listed in 4.1.4.

For illustration, in the following, we derive the fixed point function for the
formula [[AU[φ1, φ2]]].
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Beginning with the CTL axiom AU[φ1, φ2] = φ2 ∨ (φ1 ∧ AX(AU [φ1, φ2])) :
[[AU [φ1, φ2]]]
= [Applying the CTL-semantic function to the above axiom]
[[φ2 ∨ (φ1 ∧ AX(AU [φ1, φ2]))]]
= [By CTL semantic function definition [[ψ1 ∨ ψ2]] = [[ψ1]] ∪ [[ψ2]]]
[[φ2]] ∪ [[(φ1 ∧ AX(AU [φ1, φ2]))]]
= [By CTL semantic function definition [[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]]
[[φ2]] ∪ ([[φ1]] ∩ [[AX(AU [φ1, φ2])]])
= [By CTL semantic function definition [[AXψ]] = pred∀([[ψ]])]
[[φ2]] ∪ ([[φ1]] ∩ pred∀([[AU [φ1, φ2])]])
⇔ [Substituting Z = [[AU [φ1, φ2]]]
Z = [[φ2]] ∪ ([[φ1]] ∩ pred∀(Z))

This is a fixed point equation of the form Z = f(AU,[φ1,φ2])(Z), where we substi-
tuted f(AU,[φ1,φ2])(Z) = [[φ2]] ∪ ([[φ1]] ∩ pred∀(Z) is the CTL characteristic function
f(AU,[φ1,φ2]) : 2States → 2States for the operator AU. Actually the semantics of
AU[φ1, φ2] is given by the least fixed point i.e. Z = µZ.f(AU,[φ1,φ2])(Z). The answer
to the question “whether to compute the least fixed point or the greatest fixed
point for a given formula” is explained in [12].

Similarly the semantics of the formulas EU[φ1, φ2],AFφ and EFφ are given by
the least fixed points µZ.f(EU,[φ1,φ2])(Z), µZ.f(AF,φ)(Z) and µZ.f(EF,φ)(Z), respec-
tively. The semantics of the formulas AGφ,EGφ,AR[φ1, φ2] and ER[φ1, φ2] are
given by the greatest fixed points νZ.f(AG,φ)(Z), νZ.f(EG,φ)(Z), νZ.f(AR,[φ1,φ2])(Z)
and νZ.f(ER,[φ1,φ2])(Z), respectively.

6.1.1 Criteria for Fixed-point computation

Tarski’s fixed point theorem [116] specifies two sufficient conditions that guarantee
the existence of fixed-point/s.

These two conditions are:

1. the domain 2States of the characteristic functions (i.e. f(AF,φ), . . . , f(EU,[φ1,φ2]),
whose fixed points are to be computed, should form a complete lattice;

2. the characteristic functions should be monotonic.

Domain 2States is a complete lattice: The power-set of any set forms a com-
plete lattice. So 2States forms the complete lattice 〈2States,⊆,∪,∩, ∅, States〉.

Characteristic functions are monotonic: By Definition 37, a function F :
2States → 2States is monotonic if and only if Z1 ⊆ Z2 =⇒ F (Z1) ⊆ F (Z2). This
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can be proved for each of the eight characteristic functions. For illustration, we
only prove the monotonicity of f(AF,φ)(Z).

We first check the monotonicity of various operators and subsidiary functions
that are used in the characteristic functions. These operators include:

1. set-union ∪ and set-intersection ∩, which are monotonic;

2. set-complement operator compl, since Z1 ⊆ Z2 ⇔ compl(Z2) ⊆ compl(Z1), is
anti-monotonic or anti-tonic;

3. functions pred∃ and pred∀.

Lemma 2. The function pred∃ : 2States → 2States is monotonic.

Proof. Let Z1, Z2 ∈ 2States such that Z1 ⊆ Z2. Then

pred∃(Z1)
= [By definition of pred∃]
{s | ∃s′ ∈ Z1 : (s, s

′
) ∈ Trans}

⊆ [Because Z1 ⊆ Z2]
{s | ∃s′ ∈ Z2 : (s, s

′
) ∈ Trans}

= [By definition of pred∃]
pred∃(Z2)

Hence the function pred∃ : 2States → 2States is monotonic.

Lemma 3 (The function pred∀ : 2States → 2States is monotonic).

Proof. Let Z1, Z2 ∈ 2States such that Z1 ⊆ Z2. Then:

pred∀(Z1)
= [By definition of pred∀]
pred∃(Z1) \ pred∃(compl(Z1))
⊆ [Because Z1 ⊆ Z2 ⇒ pred∃(Z1) ⊆ (Z2)]
pred∃(Z2) \ pred∃(compl(Z1))
⊆ [Because Z1 ⊆ Z2 =⇒ pred∃(compl(Z1)) ⊇ pred∃(compl(Z2)]
pred∃(Z2) \ pred∃(compl(Z2))
= [By definition of pred∀]
pred∀(Z2)

Therefore, the universal predecessor function pred∀ is monotonic.
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Every CTL characteristic function is monotonic: Since a composition of
monotonic functions is also a monotonic function, each characteristic function is
monotonic. In the following lemma, for illustration, we prove the monotonicity of
f(AF,φ) : 2States → 2States:

Lemma 4. The function f(AF,φ) : 2States → 2States is monotonic.

Proof. Let Z1, Z2 ∈ 2States, such that Z1 ⊆ Z2.

f(AF,φ)(Z1)
= [By definition of f(AF,φ)]
[[φ]] ∪ pred∀(Z1)}
⊆ [Because Z1 ⊆ Z2, and pred∀ is monotonic ]
[[φ]] ∪ pred∀(Z2)
= [By definition of f(AF,φ)]
f(AF,φ)(Z2)

Therefore irrespective of the arbitrary CTL formula φ, Z1 ⊆ Z2 =⇒ f(AF,φ)(Z1)
⊆ f(AF,φ)(Z2).

6.1.2 Fixed-point algorithm

The algorithms for computing fixed-point (both least and greatest) are by-products
of the Kleene’s fixed point theorem (Theorem 2).

Least fixed point algorithm

The Kleene theorem states “for any continuous function f : L→ L, when L being
a complete lattice, the least fixed point µZ.f(Z) is the least upper bound of the
ascending Kleene chain (Definition 40):
⊥⊆ f(⊥) ⊆ f(f(⊥)) ⊆ . . .”.

The algorithm to compute a least fixed point for the CTL-characteristic func-
tions is outlined in 3. In this algorithm, the function F could be any of the CTL
characteristic functions f(AF,φ), f(EF,φ), f(AU,[φ1,φ2]) or f(EU,[φ1,φ2]).

Greatest fixed point algorithm

The Kleene theorem states “for any continuous function f : L→ L, when L being
a complete lattice, the greatest fixed point ν(Z).f(Z) is the greatest lower bound
of the descending Kleene chain (explained in Section 2.4):
> ⊇ f(>) ⊇ f(f(>)) ⊇ . . .”.
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Algorithm 3 Least fixed point algorithm for CTL characteristic functions

initialise:
i = 0; Z0 = ∅

repeat
Zi+1 = F (Zi)
i = i+ 1

until Zi = Zi−1

The algorithm to compute a greatest fixed point for the CTL-characteristic
functions is outlined in 4. We begin the algorithm with the initialisation Z =
States. In this algorithm, the function F could be any of the CTL characteristic
functions f(AG,φ), f(EG,φ), f(AR,[φ1,φ2]) or f(ER,[φ1,φ2]).

Algorithm 4 Greatest fixed point algorithm for CTL characteristic functions

initialise:
i = 0; Z0 = States

repeat
Zi+1 = F(Zi)
i = i+ 1

until Zi = Zi−1

Thus the computation step of CTL model checking requires implementing the
CTL semantic function which in essence is a fixed point computation. Though fixed
points exist their computation is not always possible i.e. the fixed point algorithms
outlined in the above might not terminate. Particularly this is the case when the
lattices are infinite. Thus the model checking of infinite state systems, whose state
space being infinite forms an infinite lattice, becomes undecidable. For this reason
[12], model checking is restricted to the verification of finite state systems. This
restriction can be overcome by applying the theory of abstract interpretation which
makes possible to approximate the [[.]].

In the next section, we explain how to apply the theory of abstract interpreta-
tion, which was introduced in Chapter 2, to model check infinite state systems.

6.2 Abstract Interpretation of CTL

For model-checking to be decidable, a system normally should be a finite state
system. But hybrid systems are infinite state systems. Hence to model check
such systems their state space – the infinite domain over which the system state
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is evaluated – should be finitely represented. This typically involves a loss of
information3. Then a new CTL semantic function is defined corresponding to
this finite representation. All these steps – of relating an infinite domain to a
finite domain and defining the new semantic function – can be formalised in the
framework of abstract interpretation.

Recall the concepts of abstract interpretation presented in Section 2.4.

6.2.1 How is the theory of abstract interpretation applied?

First, the infinite concrete lattice 〈2States,⊆,∪,∩, ∅, States〉 is approximated with
a finite abstract lattice 〈2AStates,⊆,∪,∩, ∅, AStates〉 and then the Galois connec-

tion (Definition 42) 〈2States,⊆〉 −−→←−−α
γ
〈2AStates,⊆A〉 is established between these

lattices. Recall that the functions α : 2States → 2AStates and γ : 2AStates → 2States

are the abstraction function and the concretisation function, respectively,
Now, each CTL characteristic functions f : 2States → 2States (whose fixed point

needs to be computed) is abstracted by a function f ] : 2AStates → 2AStates. We refer
to function f ] as an abstract CTL characteristic function. The theory of abstract
interpretation mandates that f ] be defined such that:

α ◦ f ◦ γ ⊆ f ] (6.1)

where α and γ form a Galois connection.
So the most precise definition for f ] : M →M is:

f ] = α ◦ f ◦ γ (6.2)

Because of 6.1, we always have the following relation between the fixed points
of f and f ]:

µC.f(C) ⊆ γ(µA.f ](A)) (6.3)

νC.f(C) ⊆ γ(νA.f ](A)) (6.4)

where C ∈ 2States and A ∈ 2AStates and A is an abstraction of C i.e. α(C) = A.
The above subset relations are direct consequences of the equation 6.1 and the

Galois connection.
Thus the abstract characteristic function f ] can be used to compute over-

approximations of the fixed points of the original characteristic function f . The

3A finite representation should not be understood as necessarily a loss of information. The
state space remains infinite, but the representation becomes finite. For instance, consider a
variable x whose value ranges over the dense interval [1, 2], which is an infinite set of reals. Such
an infinite set can be represented finitely with the constraint 1 ≤ x ∧ x ≤ 2
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case where the abstract semantic function is defined as f ] = (α ◦ f ◦ γ) gives the
most precise approximation.

We next apply this general framework to abstraction of the CTL semantic
function, and illustrate with a specific abstraction in Section 6.3.

6.2.2 Abstract Interpretation of the CTL Semantic func-
tion

In this section we consider abstractions based on Galois connections of the form
〈2States,⊆〉 −−→←−−α

γ
〈2AStates,⊆〉, where the abstract domain 2AStates consists of sets

of abstract states. In fact the abstract domain could be any lattice but for the
purposes of this chapter we consider state-based abstractions, which will be further
discussed in Section 6.3.

Definition 62. Let pred∃, pred∀, and states be the functions (defined in Defi-
nitions 58, 59 and 60) used in the CTL semantic function. Given a Galois

connection 〈2States,⊆〉 −−−→←−−−α
γ
〈2AStates,⊆〉, we define apred∃ : 2AStates → 2AStates,

apred∀ : 2AStates → 2AStates and astates : Prop→ 2AStates as below:

apred∃ = α ◦ pred∃ ◦ γ apred∀ = α ◦ pred∀ ◦ γ astates = α ◦ states

It follows directly from the properties of Galois connections that for all S ′ ⊆
States, α(pred∃(S

′)) ⊆ apred∃(α(S ′)) and α(pred∀(S
′)) ⊆ apred∀(α(S ′)).

Definition 63 (Abstract CTL semantics function). Given a Galois connection

〈2States,⊆〉 −−−→←−−−α
γ
〈2AStates,⊆〉, the abstract CTL semantic function [[.]]a : CTL →

2AStates is defined as follows.
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[[true]]a = AStates

[[false]]a = ∅
[[p]]a = astates(p)
[[φ1 ∨ φ2]]a = [[φ1]]a ∪ [[φ2]]a

[[φ1 ∧ φ2]]a = [[φ1]]a ∩ [[φ2]]a

[[AXφ]]a = apred∀([[φ]]a)
[[EXφ]]a = apred∃([[φ]]a)
[[AFφ]]a = µZ.fa(AF,φ)(Z) where fa(AF,φ)(Z) = [[φ]]a ∪ apred∀(Z)

[[EFφ]]a = µZ.fa(EF,φ)(Z) where fa(EF,φ)(Z) = [[φ]]a ∪ apred∃(Z)

[[AGφ]]a = νZ.fa(AG,φ)(Z) where fa(AG,φ)(Z) = [[φ]]a ∩ apred∀(Z)

[[EGφ]]a = νZ.fa(EG,φ)(Z) where fa(EG,φ)(Z) = [[φ]]a ∩ apred∃(Z)

[[AR[φ1, φ2]]]a = νZ.fa(AR,[φ1,φ2])(Z)

where fa(AR,[φ1,φ2])(Z) = [[φ2]]a ∩ ([[φ1]]a ∪ apred∀(Z))

[[ER[φ1, φ2]]]a = νZ.fa(ER,[φ1,φ2])(Z)

where fa(ER,[φ1,φ2])(Z) = [[φ2]]a ∩ ([[φ1]]a ∪ apred∃(Z))

[[AU[φ1, φ2]]]a = µZ.fa(AU,[φ1,φ2])(Z)

where fa(AU,[φ1,φ2])(Z) = [[φ2]]a ∪ ([[φ1]]a ∩ apred∀(Z))

[[EU[φ1, φ2]]]a = µZ.fa(EU,[φ1,φ2])(Z)

where fa(EU,[φ1,φ2])(Z) = [[φ2]]a ∪ ([[φ1]]a ∩ apred∃(Z))

Here:

• ∪ and ∩ are the usual set-union and set-intersection operators, respectively;

• apred∃, apred∀ and astates are the functions as defined in Definition 62, re-
spectively;

• the functions fa(AF,φ), f
a
(EF,φ), f

a
(AG,φ), f

a
(EG,φ), f

a
(AR,[φ1,φ2]), f

a
(ER,[φ1,φ2]), f

a
(AU,[φ1,φ2])

and fa(EU,[φ1,φ2]) are called abstract CTL characteristic functions and

are of type 2AStates → 2AStates;

• µZ.(F a(Z)) stands for the least fixed point of the function λZ.F a(Z);

• νZ.(F a(Z)) stands for the greatest fixed point of the function λZ.F a(Z);

Having defined the abstract CTL semantic function over a given abstract do-
main and Galois connection, we next consider: (i) how to obtain an abstract
domain and (ii) the corresponding Galois connection.

Given a transition systemK = 〈States, Trans, InitStates, Label, Prop〉, from
now on, the (original) state space States will be called concrete state space and
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the lattice 〈2States,⊆,∪,∩, ∅, States〉 is called the concrete lattice or the concrete
domain.

If K is a system with n state variables ranging over domains D1, . . . , Dn, then
the concrete state space States ⊆ D1 × . . .×Dn. Thus States can be viewed as
an n-dimensional space.

We are going to consider abstract state spaces that are (not necessarily disjoint)
regions of the concrete state space. Usually we will consider such abstractions that
are partitions of the concrete state space.

6.2.3 Abstract Domain Construction

Abstract Domain

Typically, an n-dimensional space can be envisaged as a union of one or more
n-dimensional regions. Such regions could be either closed or open and might
overlap each other. We abstract the infinite concrete state space States ⊆ Rn

by a finite number of n-dimensional regions. Consequently, an infinite set of
states gets abstracted with a finite set of regions. Each element of this finite set
collectively represents the (possibly infinite) states in that region.

Each region could be conveniently defined with a set of constraint expressions
over the state variables. In this dissertation, we consider the domain of linear
constraints as the abstract state space.

Abstract Domain Construction

Such an abstract state space is constructed automatically during the static analysis.
Recall from the previous chapter (Chapter 5) that we compute the set of reachable
states as the minimal model of the constraint logic program representing an LHA
with the reachable states driver. A minimal model, whether concrete M[[Pr]] or
abstract Ma[[Pr]], is a finite set of constrained facts i.e.
M[[Pr]] = {(rstate(X̄) ← c1(X̄)), . . . , (rstate(X̄) ← cnr(X̄))}. Each of these
nr constrained facts collectively represents (possibly infinite) number of states
satisfying the linear constraint ci(X̄) (for i = 1 to nr). We compose the abstract
state space with these constraints as its elements i.e. AStates = {v1, . . . , vnr}
where each abstract element vi (for i = 1 to nr) is a region formed by the set of
states satisfying the respective constraint ci (for i = 1 to nr). We then define the
abstract domain as the complete lattice formed by the power-set 2AStates.

Restriction on AStates: In this dissertation, we only consider abstractions that
partition the concrete state space. That is ∀vj, vk ∈ AStates : vj ∩ vk = ∅. This
means the conjunction of two constraints in the minimal model are unsatisfiable
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i.e. cj(X̄) ∧ ck(X̄) ≡ false. The abstract sets that are not partitions can be made
into partitions by either partitioning or merging the overlapping regions.

6.2.4 Constructing the Galois connection

To construct the Galois connection 〈2States,⊆〉 −−→←−−α
γ
〈2AStates,⊆〉, we need to define

two functions, namely, the abstraction function α : 2States → 2AStates, and the
concretisation function γ : 2AStates → 2States.

Abstraction function

Before defining the abstraction function α : 2States → 2AStates, we define how each
of the concrete states s ∈ States is represented with one or more abstract states
in the set AS ∈ 2AStates. Since every abstract element is a constraint, elemental
abstraction is straightforward. This elemental abstraction is formalised with a
function called a representation function.

Definition 64 (Representation function β : States→ 2AStates). A representation
function β : States→ 2AStates is defined as β(s) = {vj | s ∈ vj}.

Definition 65 (Abstraction function α : 2States → 2AStates). The abstraction func-
tion α : 2States → 2AStates is defined as α(CS) =

⋃
{β(s) | s ∈ CS}. Recall that

β : States→ 2AStates.

Concretisation function

The concretisation of an abstract set AS ∈ 2AStates results in a set of such concrete
states all of whose abstract representations are contained in AS.

Definition 66 (Concretisation function γ : 2AStates → 2States). The concretisation
function γ : 2AStates → 2States is defined as: γ(AS) = {s ∈ States | β(s) ⊆ AS}.

Before proceeding any further, it is necessary to know whether the abstraction
and concretisation functions form a Galois connection between the concrete and
abstract lattices. The following theorem proves that 〈2States,⊆〉 −−→←−−α

γ
〈2AStates,⊆〉.

Theorem 4. 〈2States,⊆〉 −−−→←−−−α
γ
〈2AStates,⊆〉.

Proof. By Definition 42, we need to check whether:

1. the abstraction function α : 2States → 2AStates is monotonic;

2. the concretisation function γ : 2AStates → 2States is monotonic;
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3. ∀CS ∈ States : CS ⊆ γ ◦ α(CS) and

4. ∀AS ∈ AStates : α ◦ γ(AS) v AS.

1. α is monotonic:
Let CS1, CS2 ∈ 2States such that CS1 ⊆ CS2. Then:

α(CS1) = [By the definition of α]⋃
{β(s) | s ∈ CS1}
⊆ [Because CS1 ⊆ CS2]⋃
{β(s) | s ∈ CS2}

= [By the definition of α]
α(CS2).

Thus α is monotonic.

2. γ is monotonic:
Let AS1, AS2 ∈ 2AStates such that AS1 v AS2. Then:

γ(AS1)
= [By definition of γ]
{s ∈ States | β(s) ⊆ AS1}
⊆ [Because AS1 v AS2]
{s ∈ States | β(s) ⊆ AS2}
= [By definition of γ]
γ(AS2)

Thus γ is monotonic.

3. The parts 3 and 4 of the theorem hold iff:
∀CS ∈ 2States, ∀AS ∈ 2AStates : α(CS) ⊆ AS ⇔ CS ⊆ γ(AS).

The proof is taken from [95]:

α(CS) v AS ⇔
⋃
{β(s) | s ∈ CS} v AS

⇔ ∀s ∈ CS : β(s) v AS
⇔ CS ⊆ γ(AS)

Therefore α and γ form the 〈2States,⊆〉 −−→←−−α
γ
〈2AStates,⊆〉.

Since all the operators appearing in the abstract CTL-semantic are monotonic,
the fixed-point expressions and hence the abstract semantic function is well de-
fined. The following soundness theorem is the basis of our abstract model checking
approach.
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Theorem 5 (Safety of Abstract CTL Semantics). Let K be a Kripke structure,

〈2States,⊆〉 −−−→←−−−α
γ
〈2AStates,⊆〉 be a Galois connection and φ any CTL-formula in

negation normal form. Then α([[φ]]) ⊆ [[φ]]a and γ([[φ]]a) ⊇ [[φ]].

The proof follows from the fact that α is a join-morphism: that is, that α(S1∪
S2) = α(S1) ∪ α(S2) and the fact that α(S1 ∩ S2) ⊆ α(S1) ∩ α(S2).

Theorem 6.

∀φ ∈ CTL : α([[φ]]) ⊆ [[φ]]a

Proof. Proof by induction on the depth of φ :

1. Base case k = 1 i.e. φ = p

α([[p]])
= [By definition of [[p]]]
α ◦ states(p)
= [By definition of astates]
astates(p)
= [By definition of [[p]]a]
[[p]]a

Thus α([[p]]) ⊆ [[p]]a.

2. Inductive case: Depth k > 1

Inductive hypothesis: For all φ of depth j < k, assume that α([[φ]]) ⊆ [[φ]]a.

Induction: There are several cases depending on the form of φ as following:

(a) φ1 ∪ φ2 and φ1 ∩ φ2:

α(φ1 ∪ φ2)
= [Since α is additive]
α(φ1) ∪ α(φ2)
⊆ [By induction hypothesis]
[[φ1]]a ∪ [[φ2]]a

= [By definition of [[]]a]
[[φ1 ∪ φ2]]a

Therefore, α(φ1∪φ2) ⊆ [[φ1∪φ2]]a. Similarly we can prove α(φ1∩φ2) ⊆
[[φ1 ∩ φ2]]a.
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(b) EXφ and AXφ:

α([[EXφ]])
= [By definition of [[]]]
α(pred∃([[φ]]))
⊆ [Since[[φ]] ⊆ γ(α([[φ]]))and pred∃ is monotonic]
α(pred∃(γ ◦ α([[φ]])))
=
α(pred∃(γ(α([[φ]]))))
= [By definition of apred∃]
apred∃(α([[φ]]))
⊆ [By induction hypothesis and apred∃ being monotonic]
apred∃([[φ]]a)
= [By definition of [[]]a]
[[EXφ]]a

Thus α([[EXφ]]) ⊆ [[EXφ]]a. Similarly it can be proved that α([[AXφ]]) ⊆
[[AXφ]]a.

(c) We can prove the same for the semantic functions involving fixed point
computations i.e. AFφ, . . . ,EU[φ1, φ2].

α([[Op φ]])[where the place holder Op ∈ {AF, . . . ,EG}]
= [By CTL semantic function]
α(fix(f(Op,φ)))
⊆ [By the Lemma 5]
fix(fa(Op,φ))

=
[[Op φ]]a

In the above, depending on the operator Op, fix(f(Op,φ)) stands for either
the least fixed point or the greatest fixed point of the function f(Op,φ).

Thus α([[Op φ]]) ⊆ [[Op φ]]a where Op ∈ {AF, . . . ,EG}. We can prove the same for
the operators AU,EU,AR and ER.

Lemma 5. Let f : 2States → 2States, fa : 2AStates → 2AStates be two monotonic
function over the complete lattices 2States and 2AStates such that α ◦ f ⊆ fa ◦ α
where 〈2States, α, γ, 2AStates〉 is the Galois connection. By Theorems 7.1.0.2 and
7.1.0.4 from [27], we have α(lfp(f)) ⊆ lfp(fa) and α(gfp(f)) ⊆ gfp(fa).

Following this lemma, since f(Op,φ) is a monotonic function, given the Galois
connection 〈2States, α, γ, 2AStates〉, if α(lfp(f(Op,φ))) ⊆ lfp(fa(Op,φ)), then α(lfp(f(Op,φ)))
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⊆ lfp(fa(Op,φ)) and α(gfp(f(Op,φ))) ⊆ gfp(fa(Op,φ)). In Theorem 7, it is proved that

α(f(Op,φ)) ⊆ fa(Op,φ).

Theorem 7. α(f(Op,φ)) ⊆ fa(Op,φ) where φ is a CTL formula and Op ∈ {AF, . . . ,EG}.
Proof. Assume that α([[φ]]) ⊆ [[φ]]a.

We prove when Op = AF

α(f(AF,φ)(Z))
= [By definition [[]]]
α([[φ]] ∪ pred∀(Z))
= [Because α is additive]
α([[φ]]) ∪ α(pred∀(Z))
⊆ [By the Theorem 6]
[[φ]]a ∪ α(pred∀(Z))
⊆ [Because of the Galois connection and the monotonicity of pred∀]
[[φ]]a ∪ α(pred∀(γ(α(Z))))
=
[[φ]]a ∪ α ◦ pred∀ ◦ γ(α(Z))
= [By the definition of pred∀]
[[φ]]a ∪ apred∀(α(Z))
= [By the abstract CTL function definition]
[[fa(AF,φ)(α(Z))]]

Thus α ◦ f(AFφ) ⊆ [[fa(AFφ) ◦α]]. We can prove a similar result for the rest of the
CTL characteristic functions.

Verification based on abstract semantics: The above theorem provides us
with a sound abstract model checking procedure for any CTL formula φ. As
noted previously, K |= φ iff [[¬φ]] ∩ InitStates = ∅ (where ¬φ is converted to
negation normal form). It follows from Theorem 5 that this follows if γ([[¬φ]]a) ∩
InitStates = ∅. Of course, if γ([[¬φ]]a) ∩ InitStates ⊇ ∅ nothing can be con-
cluded.

Abstract-interpretation based model checking recipe For a transition sys-
tem TS, the Abstract interpretation based CTL Model Checking recipe is as below:

1. Negate the CTL-formula φ to be verified. Say ¬φ = ψ where ψ is in negated
normal form.

2. Compute the abstract states [[ψ]]a.

3. Compute the concrete sets γ([[ψ]]a).

4. Check whether γ([[ψ]]a) ∩ InitStates = ∅
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6.3 Abstract Model Checking in Constraint-based

Domains

The abstract semantics given in Section 6.2.2 is not always implementable in prac-
tice for a given Galois connection 〈2C ,⊆〉 −−→←−−α

γ
〈2A,⊆〉. Here A,C are AStates

and States, respectively. In particular, the function γ yields a value in the con-
crete domain, which is typically an infinite object. Thus evaluating the functions
(α ◦ pred∃ ◦ γ) and (α ◦ pred∃ ◦ γ) might not be feasible.

In this section we show that the construction is implementable for transition
systems and abstract domains expressed using linear constraints.

6.3.1 Constraint Representation of Transition Systems

Recall from Section 7.1, that we represent the transition systems with linear con-
straints. We review the basic terminology and operations on linear constraints.
Consider the set of linear arithmetic constraints (hereafter simply called con-
straints) over the real numbers.

c ::= t1 ≤ t2 | t1 < t2 | c1 ∧ c2 | c1 ∨ c2 | ¬c

where t1, t2 are linear arithmetic terms built from real constants, variables and
the operators +, ∗ and −. The constraint t1 = t2 is an abbreviation for t1 ≤
t2 ∧ t2 ≤ t1. Note that ¬(t1 ≤ t2) ≡ t2 < t2 and ¬(t1 < t2) ≡ t2 ≤ t2, and so
the negation symbol ¬ can be eliminated from constraints if desired by moving
negations inwards by Boolean transformations and then applying this equivalence.

To identify the variables X̄ occuring in a constraint c, we sometimes write
c(X̄). A constraint is satisfied by an assignment of real numbers to its variables
if the constraint evaluates to true under this assignment, and is satisfiable if there
exists some assignment that satisfies it. A constraint can be identified with the set
of assignments that satisfy it. Thus a constraint over n real variable represents a
set of points in Rn.

A constraint can be projected onto a subset of its variables. Denote by projV (c)
the projection of c onto the set of variables V .

Let us consider a transition system defined over the state-space Rn. Let x̄, x̄1, x̄2

etc. represent n-tuples of distinct variables, and r̄, r̄1, r̄2 etc. represent tuples of real
numbers. Let x̄/r̄ represent the assignment of values r̄ to the respective variables
x̄. We consider transition systems in which the transitions can be represented as

a finite set of transition rules of the form x̄1
c(x̄1,x̄2)−→ x̄2. This represents the set of

all transitions from state r̄1 to state r̄2 in which the constraint c(x̄1, x̄2) is satisfied
by the assignment x̄1/r̄1, x̄2/r̄2. Such transition systems can be used to model
real-time control systems [57, 13].
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6.3.2 Computation of the CTL semantic function using
constraints

A constraint representation of a transition system allows a constraint solver to be
used to compute the functions pred∃, pred∀ and states in the CTL semantics. Let
T be a finite set of transition rules. Let c′(ȳ) be a constraint over variables ȳ. It is
assumed that the set of propositions in the Kripke structure used in the semantics
is the set of linear constraints.

pred∃(c
′(ȳ)) =

∨
{projx̄(c

′(ȳ) ∧ c(x̄, ȳ)) | x̄ c(x̄,ȳ)−→ ȳ ∈ T}
pred∀(c

′(ȳ)) = pred∃(c
′(ȳ)) ∧ ¬(pred∃(¬c′(ȳ)))

states(p) = p

In the definition of states, we use p both as the proposition (the argument of states)
and as a set of points (the result) where p holds.

6.3.3 Abstract Domains Based on a Disjoint State-Space
Partition

Suppose we have a transition system with n state variables; we take as the concrete
domain the complete lattice 〈2C ,⊆〉 where C ⊆ Rn is some non-empty, possibly
infinite set of n-tuples including all the reachable states of the system.

We build an abstraction of the state space based on a disjoint partition of C say
A = {d1, . . . , dk} such that

⋃
A = C. Such a partition can itself be constructed by

an abstract interpretation of the transition relation [13]. Define a representation
function β : C → 2A, such that β(x̄) = {d ∈ A | x̄ ∈ d}. We extend the representa-
tion function to sets of points, obtaining the abstraction function α; 2C → 2A given
by α(S) =

⋃
{β(x̄) | x̄ ∈ S}. Define the concretisation function γ : 2A → 2C , as

γ(V ) = {x̄ ∈ C | β(x̄) ⊆ V }. As shown in [95, 27], (2C ,⊆) −−→←−−α
γ

(2A,⊆) is a Galois

connection. Because the partition A is disjoint the value of β(x̄) is a singleton for
all x, and the γ function can be written as γ(V ) =

⋃
{γ({d}) | d ∈ V }.

6.3.4 Representation of Abstraction Using Constraints

A constraint can be identified with the set of points that satisfies it. Suppose
that each element d of the partition A is representable as a linear constraint cd
over the variables x1, . . . xn. The β function can be rewritten as β(x̄) = {d |
(x̄) satisfies cd}. Assuming that we apply α to sets of points represented by a
linear constraint over x1, . . . xn, we can rewrite the α and γ functions as follows.

α(c) = {d | SAT(cd ∧ c)} γ(V ) =
∨
{cd | d ∈ V }
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6.3.5 Computation of α and γ functions using constraint
solvers

The constraint formulations of the α and γ functions allows them to be effectively
computed. The expression SAT(cd∧ c) occurring in the α function means “(cd∧ c)
is satisfiable” and can be checked by an SMT solver. In our experiments we use
the SMT solver Yices [37]. The γ function simply collects a disjunction of the
constraints associated with the given set of partitions; no solver is required.

6.3.6 Implementation of constraint-based abstract seman-
tics

Combining the constraint-based evaluation of the functions pred∃ and pred∀ with
the constraint-based evaluation of the α and γ functions gives us (in principle)
a method of computing the abstract semantic counterparts of pred∃ and pred∀,
namely (α◦pred∃ ◦γ) and (α◦pred∀ ◦γ). This gives us a sound abstract semantics
for CTL as discussed previously. The question we now address is the feasibility of
this approach. Taken naively, the evaluation of these constraint-based functions
(in particular pred∀) does not scale up. We now show how we can transform these
definitions to a form which can be computed much more efficiently, with the help
of an SMT solver.

Consider the evaluation of (α ◦ pred∀ ◦ γ)(V ) where V ∈ 2A is a set of disjoint
partitions represented by constraints.

(α ◦ pred∀ ◦ γ)(V ) = (α ◦ pred∀)(
∨
{cd | d ∈ V })

= α(pred∃(
∨
{cd | d ∈ V }) ∧ ¬(pred∃(¬(

∨
{cd | d ∈ V })))

= α(pred∃(
∨
{cd | d ∈ V }) ∧ ¬(pred∃(

∨
{cd ∈ A \ V }))

In the last step, we use the equivalence ¬(
∨
{cd | d ∈ V }) ↔

∨
{cd ∈ A \ V }),

which is justified since the abstract domain A is a disjoint partition of the concrete
domain; thus A \ V represents the negation of V restricted to the state space of
the system. The computation of pred∃(

∨
{cd ∈ A \ V }) is much easier to com-

pute (with available tools) than pred∃(¬(
∨
{cd | d ∈ V })). The latter requires

the projection operations proj to be applied to complex expressions of the form
projx̄(¬(c1(ȳ) ∨ · · · ∨ ck(ȳ)) ∧ c(x̄, ȳ)), which involves expanding the expression (to
d.n.f. for example); by contrast the former requires evaluation of simpler expres-
sions of the form projx̄(cd(ȳ) ∧ c(x̄, ȳ)).
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6.3.7 Further Optimisation by Pre-Computing Predeces-
sor Constraints

We now show that we can improve the computation of the abstract function (α ◦
pred∃ ◦γ). Let {ci} be a set of constraints, each of which represents a set of points.
It can easily seen that pred∃(

∨
{ci}) =

∨
{pred∃(ci)}. Consider the evaluation of

(α ◦ pred∃ ◦ γ)(V ) where V ∈ 2A is a set of disjoint partitions represented by
constraints.

(α ◦ pred∃ ◦ γ)(V ) = (α ◦ pred∃)(
∨
{cd | d ∈ V })

= α(
∨
{pred∃(cd) | d ∈ V })

Give a finite partition A, we pre-compute the constraint pred∃(cd) for all d ∈ A. Let
Pre(d) be the stored predecessor constraint for partition element d. The results
can be stored as a table, and whenever it is required to compute (α ◦ pred∃ ◦ γ)(V )
where V ∈ 2A, we simply evaluate α(

∨
{Pre(d) | d ∈ V }). The abstraction

function α is evaluated efficiently using the SMT solver, as already discussed.
Note that expressions of the form α(pred∃(

∨
{· · · })) occur in the transformed

expression for (α ◦ pred∀ ◦ γ)(V ) above. The same optimisation can be applied
here too. Our experiments show that this usually yields a considerable speed-up
(2-3 times faster) compared to dynamically computing the pred∃ function during
model checking.

6.4 Implications of Abstraction

Typically, the precision of (abstraction-based) verification techniques does suffer
from the loss of information introduced by over-approximation. However the pro-
posed techniques, because of the theory of abstract interpretation, are sound but
not complete. That means, if a property φ is proved to hold in the abstraction,
then, because of the soundness, the property is deemed to hold in the original
system. However, because of the lack of completeness, we might not be able to
conclude the correctness of each and every property with these techniques.

Abstraction and Synchronisation In the proposed framework, a system com-
prising more than one LHA is verified by first constructing the product of its
constituent LHAs and then, depending on the property, one of the proposed tech-
niques is applied. Thus, since the abstraction is done after the product LHA
is constructed, synchronisation gets inbuilt into the constraints corresponding to
(guards and actions of) the transitions of product LHA. However, loss of infor-
mation due to abstraction can affect synchronisation in the same way that it can
affect any other property of the system.
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Summary

In this chapter, we presented the abstract model checking framework to verify
arbitrary CTL formulas. Given the minimal model M[[P r

Sys]] or Ma[[P r
Sys]] corre-

sponding to an LHA Sys and a CTL formula φ, abstract model checking involves
the following steps:

1. Constructing the abstract state space AStates from M[[P r
Sys]] or Ma[[P r

Sys]] (as
explained in Section 6.2.3). This abstract state space is a finite set of regions
partitioning the reachable states.

2. Defining the Galois connection between the concrete domain 2States and the
abstract domain 2AStates (as explained in Section 6.2.4);

3. Computing the abstract states [[¬φ]]a by using the abstract CTL semantic
function defined in Definition 63;

4. Giving a definition of α and γ in terms of constraint operations;

5. Computing the set γ([[¬φ]]a) ∩ InitStates where InitStates is the set of
initial states of Sys.

(a) If γ([[¬φ]]a) ∩ InitStates = ∅4 the property φ holds;

(b) If γ([[¬φ]]a) ∩ InitStates ⊇ ∅ and γ([[φ]]a) ∩ InitStates ⊇ ∅ the cor-
rectness of property φ is not known. Proving such properties often
mandates refining the abstraction.

In the next chapter, we present case studies that make use of AMC.

4Alternatively, because of the Galois connection, a property φ holds if α(InitStates) ∩
[[¬φ]]a = ∅.
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Chapter 7

Experiments

This chapter describes experiments with the modelling and verification techniques
proposed in this dissertation. We chose some example systems from the literature
for experimentation.

The method described in this chapter is a walk through of the framework
outlined in Figure 1.1 of Chapter 1. It comprises translating LHA into CLP,
reachability analysis and model checking. In the translation step, we employ pro-
gram transformation techniques, namely, compilation and partial evaluation. The
reachability analysis step is based on the static analysis as explained in Chapter 5.
The model checking step applies the abstract model checking that was presented
in Chapter 6.

Program compilation is a technique to transform a source program in one lan-
guage into an equivalent target program in another language. The languages of
source and target programs are called source and target languages respectively.
Compilation typically involves parsing and code generation. The LHA models are
graphical and can be encoded in a textual language. We compile these LHA text
programs into constraint logic program. The code generation step automates the
translation scheme explained in Chapter 3.

Partial evaluation is a technique of specialising a program with respect to one
or more of its inputs. The generic LHA driver is specialised w.r.t. to a given
LHA model. The resulting specialised program is the constraint logic program
capturing the state transition semantics of the LHA model. We use the LOGEN
partial evaluator [87] to do this specialisation.

Static analysis is a compile-time technique to analyse the run-time behaviour
of a program. For a constraint logic program, its minimal model includes all the
possible run-time behaviours. A minimal model is computed following the iterative
algorithms presented in Chapter 2.

Model checking is a technique to verify temporal properties of reactive systems.
Based on the results from static analysis, certain temporal properties could be

115



verified following the abstract model checking technique that was presented in the
previous chapter.

Chapter Overview

- Section 7.1 presents the tools to realise the translation of an LHA into CLP;

- Section 7.2 presents the tools to realise the proof techniques I and II;

- Section 7.3 presents experiments of verifying various systems.

7.1 Tools in the Framework

In what follows are explained how the translation of LHA models into CLP pro-
grams and the proof techniques (presented in the previous chapter) are accom-
plished with a chain of tools implemented in CLP. Some of these tools are existing
general purpose CLP program analysis tools; while some are developed for the
purpose of analysing LHA models and model checking transition systems.

Translating LHA models into CLP programs

7.1.1 Text LHA language

Actually the language of LHA is graphical. To encode such graphical LHA models
as text programs, we defined a simple text language named Text LHA. The syntax
for this language is shown in Figure 7.1.

The following example (Example 36) illustrates the textual LHA LHAtext en-
coding a graphical LHA model.

Example 36. Consider the water-level monitoring system that was introduced in
Example 15 (Figure 3.8). Recall that this monitor is expected to maintain the
water-level (W ) between 1 and 12 (inclusive). The LHAtext textual encoding of
this LHA is shown in Figure 7.2.

7.1.2 LHA2CLP Compiler

The LHA to CLP translation scheme presented in Chapter 3 is mechanised with
a tool written in Ciao Prolog. This tool, named LHA2CLP compiler, compiles
a Text LHA program into a CLP program. The parser part, which parses a Text
LHA program, of this compiler is generated using the JavaCC tool.

Recall that across different LHA models, only the definitions for predicates
alpha/4, gamma/3, inv/1, etc. change; while the definitions of the rstate/1,
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LHA ::= <Var Decl>+ <Event Decl>* <Loc Decl>+ <Trans Decl>+

Var Decl ::= ’variable(’ VariableType ’,’ VariableID ’).’
Event Decl ::= ’event(’ EventID ’).’
Loc Decl ::= ’location(’ LocID ’,’ <RateDecl> ’,’ <InvariantDecl> ’).’
Trans Decl ::= ’transition(’ <LocPair> ’,’ <GuardDecl> ’,’ <ActionDecl>

’).’

VarType ::= ’numeric’
RateDecl ::= ’(’ <RateRel> ’)’ | ’(’ <RateRelComma>+ <RateRel>’)’
RateDeclComma ::= <RateRel> ’,’
RateRel ::= ’rate(’ VariableID ’)’ <LinRelSymb> <LinExpr>
InvariantDecl ::= ’(’ <LinRel> ’)’ | ’(’ <LinRelAndOr>+ <LinRel>’)’
LocPair ::= ’(’ LocID ’,’ LocID ’)’
GuardDecl ::= ’(’ <LinRel> ’)’ | ’(’ <LinRelComma>+ <LinRel>’)’
ActionDecl ::= ’()’ | ’(’ <LinRel> ’)’ | ’(’ <LinRelComma>+ <LinRel>’)’

| ’(’ <LinRelComma>* <EventDecl>’)’
EventDecl ::= EventID ’:= 1’

LinRelComma ::= <LinRel> ’,’
LinRelAndOr ::= <LinRel> ’&’ | <LinRel> ’|’
LinRel ::= ’true’ | <LinExpr> <LinRelSymb> <NUMBER>
LinExpr ::= NUMBER | DECIMALNUMBER | VariableID

| <Expression> <ArithOp> <Expression>
LinRelSymnb ::= ’>’ | ’>=’ | ’<’ | ’=<’ | ’=’ | ’==’
ArithOp ::= ’+’ | ’-’ | ’*’

NUMBER ::= [’1’-’9’] [’0’-’9’]* | ’0’
DECIMALNUMBER ::= <NUMBER> ’.’ <NUMBER>
EventID ::= ’event ’<LETTER> (<LETTER>|<DIGIT>)*
LocID ::= ’loc ’ <NUMBER>
VariableID ::= <LETTER> (<LETTER>|<DIGIT>)*
LETTER ::= ([’A’-’Z’] | [’a’-’z’] | " ")
DIGIT ::= [’0’-’9’]

Figure 7.1: The Syntax of the Text-LHA language
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variable(numeric,x).

variable(numeric,w).

location(loc 0,(rate(x)=+1,rate(w)=+1),(w<10)).

location(loc 1,(rate(x)=+1,rate(w)=+1),(x<2)).

location(loc 2,(rate(x)=+1,rate(w)=-2),(w>5)).

location(loc 3,(rate(x)=+1,rate(w)=-2),(x<2)).

init(loc 0,(x=0,w=0)).

transition((loc 0,loc 1),(w==10),(x=0)).

transition((loc 1,loc 2),(x==2),()).

transition((loc 2,loc 3),(w==5),(x=0)).

transition((loc 3,loc 0),(x==2),()).

Figure 7.2: The textual encoding of the water-level LHA model

qstate/1 and transition/2 predicates remain the same. So the LHA2CLP
compiler generates first the CLP program fragment defining all the predicates
appearing in the transition predicate transition/2 and then appends either the
reachable states driver (of Figure 3.9) or the reaching states driver (of Figure 3.10)
to this CLP fragment resulting in the total CLP program encoding of a given LHA
model. We have two versions of this LHA2CLP compiler, namely, LHA2CLPR

and LHA2CLPQ.

The LHA2CLPR compiler generates the CLP program encoding an LHA with
the reachable states driver; while LHA2CLPQ generates the CLP program encod-
ing an LHA with the reaching states driver. We need to specify the initial state
(resp. target state) in the case of the LHA2CLPR (resp. LHA2CLPQ) com-
piler. In this chapter, as we only focus on the forward reasoning driver we do not
demonstrate the LHA2CLPQ compiler.

Example 37. The LHA2CLPR compiler, when input with the textual LHA pro-
gram from the previous example, generates the CLP program as shown in Figure
7.3. In this CLP program, the list argument corresponds to the state tuple. The
first element of this list is the location variable, the next two elements are the state
variables x,w (declared in the Text LHA program) and the last element is the time
variable t.
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locationOf([Loc, , , ],Loc).

before([ , , ,C],[ , , ,F]) :- C=<F.

stateSpace([Loc, , , ]) :- location(Loc).

location(loc 0).

location(loc 1).

location(loc 2).

location(loc 3).

init([loc 0,+0,+0,0]).

invariant(loc 0,[loc 0, ,B, ]) :- B< +10.

invariant(loc 1,[loc 1,A, , ]) :- A< +2.

invariant(loc 2,[loc 2, ,B, ]) :- B> +5.

invariant(loc 3,[loc 3,A, , ]) :- A< +2.

d([loc 0,A,B,C],[ ,D,E,F]) :-

1*D=1*A+1*(F-C),

1*E=1*B+1*(F-C).

d([loc 1,A,B,C],[ ,D,E,F]) :-

1*D=1*A+1*(F-C),

1*E=1*B+1*(F-C).

d([loc 2,A,B,C],[ ,D,E,F]) :-

1*D=1*A+1*(F-C),

1*E=1*B+ -2*(F-C).

d([loc 3,A,B,C],[ ,D,E,F]) :-

1*D=1*A+1*(F-C),

1*E=1*B+ -2*(F-C).

gamma(0,loc 0,[loc 1, ,B, ]) :- B= +10.

gamma(1,loc 1,[loc 2,A, , ]) :- A= +2.

gamma(2,loc 2,[loc 3, ,B, ]) :- B= +5.

gamma(3,loc 3,[loc 0,A, , ]) :- A= +2.

alpha(0,loc 0,[loc 1,A,B, ],[loc 1,G,H,0]) :- G= +0, H=B.

alpha(1,loc 1,[loc 2,A,B, ],[loc 2,G,H,0]) :- G=A, H=B.

alpha(2,loc 2,[loc 3,A,B, ],[loc 3,G,H,0]) :- G= +0, H=B.

alpha(3,loc 3,[loc 0,A,B, ],[loc 0,G,H,0]) :- G=A, H=B.

Figure 7.3: The constraint logic program encoding the LHA in Figure 3.8
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Specialisation

In this step, we specialise the CLP program (encoding a given LHA) to reduce the
computational expenses to be incurred in the verification phase.

Recall (from both the verification recipes of Chapter 5 and the model checking
recipe of Chapter 6) that proving a property mandates computing the minimal
model of the CLP program encoding the LHA to be verified. The minimal model
is computed, because the set of reachable (resp. reaching states) is given by the
ground instances of the rstate/1 (resp. qstate/1) predicate. But (recall from
Chapter 3) the complete CLP model CLPLHA of an LHA model LHA is the
union of clauses defining the predicates transition/2, d/1, alpha/2, gamma/2,
invariant/2, before/2, and either the rstate/1 and init/1 or qstate/1 and
target/1. Thus computing the minimal model M[[CLPLHA]] means computing
the ground instances for all the mentioned predicates. But, since we are only
interested in instances of either the rstate/1 (or qstate/1) predicate, computing
the ground instances for uninteresting predicates could be avoided to reduce the
computation costs. This is achieved by first specialising the CLPLHA into CLPSpec,
which contains only the specialised versions of rstate/1 (or qstate/1) predicate,
and then computing the minimal model M[[CLPSpec]]. We use an existing CLP
tool called LOGEN to specialise CLPLHA into CLPspec.

To get an idea of the computational efficiency we gain by specialisation, con-
sider the computation of ground instances for the transition/2 predicate in the
CLPLHA program. This involves computing all the states, both reachable and
unreachable, that are connected with a transition. Besides this computational
efficiency, we also gain precision while computing the abstract minimal model
Ma[[LHAspec]].

7.1.3 LOGEN

LOGEN is a partial evaluator that specialises a CLP program according to an an-
notation for this CLP program. It accepts two programs, (a) the CLP program to
be specialised and (b) the annotation of that program, and outputs the specialised
CLP program.

We could view the specialisation of the CLP program CLPLHA encoding an
LHA model as partially evaluating the reachable states driver (resp. reaching states
driver) w.r.t the transition relation (i.e. predicate transition/2) corresponding
to a given LHA model.

The following example (Example 38) illustrates the use of LOGEN partial
evaluator.

Example 38. The partial evaluator LOGEN when input with two files: (a) the
CLPLHA program shown in Figure 7.3 and (b) the annotation for the CLPLHA as
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shown in Figure 7.4 outputs the specialised program CLPspec seen in Figure 7.5.
The annotation file is also mechanically generated by the LHA2CLP compiler.
The LOGEN partial evaluator even specialises the rstate/1 predicate with re-
spect to the locations. Hence in the specialised program there are four predicates
rstate 1, rstate 2, rstate 4 and rstate 4, which are specialised versions of
rstate/1 with respect to the locations loc 0, loc 1, loc 2 and loc 3, respectively.
Besides this, LOGEN also flattens the list (of state variables) and changes the
order of variables. The location variable which was the first element in the list is
placed as the last argument. So in this specialised program, arguments A,B,C,D
corresponds to x,w, t and location, respectively. The last argument D in the pred-
icate rstatei/4 (for i= 1 to 4) takes the value D = i+ 3.

7.2 Proof techniques

7.2.1 Proof techniques I

The verification recipes presented in Chapter 5 essentially involve two steps: (i)
computing the minimal model of the CLP program encoding the LHA to be veri-
fied; (ii) querying this minimal model with an appropriate goal. We use two gen-
eral purpose CLP program analyses tools, namely TPCLP analyser and CHA
analyser to accomplish the first step; while we use a CLP run time system to
accomplish the second step.

Minimal model computation

TPCLP analyser

This tool computes the concrete minimal model (CMM) of a CLP program. It
implements the Algorithm 1, where the transfer function is as defined in Definition
31, to compute this minimal model. This TPCLP analyser when input with a
CLP program outputs its minimal model. We implemented this tool in Ciao Prolog
[20] and makes use of the Parma Polyhedra Library [11].

Furthermore, TPCLP tool can analyse only the CLP programs with flat terms
i.e. the arguments in the program clauses should only be variables and/or constants
but not lists. Whenever there are list arguments in the program, the LOGEN tool,
besides specialising the program, also flattens such lists. Therefore, the specialised
programs from LOGEN can be analysed with this TPCLP tool.

Example 39 illustrates the application of TPCLP analyser.

Example 39. The TPCLP tool when input with the specialised program of Figure
7.5 outputs the minimal model shown in Figure 7.6. The constrained atoms with
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logen(locationOf/2,locationOf([Loc, , , ],Loc)).
logen(before/2,before([ , , ,C],[ , , ,F])) :- logen(rescall,C=<F).
logen(stateSpace/1,stateSpace([Loc, , , ])) :-

logen(unfold,location(Loc)).
logen(location/1,location(loc 0)).
logen(location/1,location(loc 1)).
logen(location/1,location(loc 2)).
logen(location/1,location(loc 3)).
logen(init/1,init([loc 0,+0,+0,0])).

logen(invariant/2,invariant(loc 0,[loc 0, ,B, ])) :-
logen(rescall,B< +10).

logen(invariant/2,invariant(loc 1,[loc 1,A, , ])) :-
logen(rescall,A< +2).

logen(invariant/2,invariant(loc 2,[loc 2, ,B, ])) :-
logen(rescall,B> +5).

logen(invariant/2,invariant(loc 3,[loc 3,A, , ])) :-
logen(rescall,A< +2).

logen(d/2,d([loc 0,A,B,C],[ ,D,E,F])) :-
logen(rescall,1*D=1*A+1*(F-C)), logen(rescall,1*E=1*B+1*(F-C)).

logen(d/2,d([loc 1,A,B,C],[ ,D,E,F])) :-
logen(rescall,1*D=1*A+1*(F-C)), logen(rescall,1*E=1*B+1*(F-C)).

logen(d/2,d([loc 2,A,B,C],[ ,D,E,F])) :-
logen(rescall,1*D=1*A+1*(F-C)), logen(rescall,1*E=1*B+ -2*(F-C)).

logen(d/2,d([loc 3,A,B,C],[ ,D,E,F])) :-
logen(rescall,1*D=1*A+1*(F-C)), logen(rescall,1*E=1*B+ -2*(F-C)).

logen(gamma/3,gamma(0,loc 0,[loc 1, ,B, ])) :- logen(rescall,B= +10).
logen(gamma/3,gamma(1,loc 1,[loc 2,A, , ])) :- logen(rescall,A= +2).
logen(gamma/3,gamma(2,loc 2,[loc 3, ,B, ])) :- logen(rescall,B= +5).
logen(gamma/3,gamma(3,loc 3,[loc 0,A, , ])) :- logen(rescall,A= +2).

logen(alpha/4,alpha(0,loc 0,[loc 1,A,B, ],[loc 1,G,H,0])) :-
logen(rescall,G= +0), logen(rescall,H=B).

logen(alpha/4,alpha(1,loc 1,[loc 2,A,B, ],[loc 2,G,H,0])) :-
logen(rescall,G=A), logen(rescall,H=B).

logen(alpha/4,alpha(2,loc 2,[loc 3,A,B, ],[loc 3,G,H,0])) :-
logen(rescall,G= +0), logen(rescall,H=B).

logen(alpha/4,alpha(3,loc 3,[loc 0,A,B, ],[loc 0,G,H,0])) :-
logen(rescall,G=A), logen(rescall,H=B).

Figure 7.4: The annotation of the constraint logic program of Figure 7.3
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rstate 1(A,B,C,D):-
D=4, 0=<C, 1*A=1*0+1*(C-0),
1*B=1*0+1*(C-0), B<10.

rstate 1(A,B,C,D):-
rstate 4(E,F,G,H),
D=4, H=7, G=<I, 1*J=1*E+1*(I-G),
1*K=1*F+ -2*(I-G) J=2, L=J, M=K,
0=<C, 1*A=1*L+1*(C-0),
1*B=1*M+1*(C-0), B<10.

rstate 2(A,B,C,D):-
rstate 1(E,F,G,H),
D=5, H=4, G=<I,
1*J=1*E+1*(I-G),
1*K=1*F+1*(I-G),
K=10, L=0, M=K,
0=<C,
1*A=1*L+1*(C-0),
1*B=1*M+1*(C-0),
A<2.

rstate 3(A,B,C,D):-
rstate 2(E,F,G,H),
D=6, H=5, G=<I,
1*J=1*E+1*(I-G),
1*K=1*F+1*(I-G),
J=2,L=J,M=K,0=<C,
1*A=1*L+1*(C-0),
1*B=1*M+ -2*(C-0),
B>5.

rstate 4(A,B,C,D):-
rstate 3(E,F,G,H),
D=7, H=6, G=<I,
1*J=1*E+1*(I-G),
1*K=1*F+ -2*(I-G),
K=5, L=0, M=K, 0=<C,
1*A=1*L+1*(C-0),
1*B=1*M+ -2*(C-0),
A<2.

Figure 7.5: The specialised forward reasoning driver w.r.t the LHA of Figure 7.3.
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rstate 1(A,B,C,D) :-

D=1, -1*A> -10, 1*A>=0, 1*A+ -1*B=0, 1*A+ -1*C=0.

rstate 2(A,B,C,D) :-

D=2, -1*C> -2, 1*C>=0, 1*A+ -1*C=0, 1*B+ -1*C=10.

rstate 3(A,B,C,D) :-

D=3, -2*C> -7, 1*C>=0, 1*A+ -1*C=2, 1*B+2*C=12.

rstate 4(A,B,C,D) :-

D=4, -1*C> -2, 1*C>=0, 1*A+ -1*C=0, 1*B+2*C=5.

rstate 1(A,B,C,D) :-

D=1, -1*C> -9, 1*C>=0, 1*A+ -1*C=2, 1*B+ -1*C=1.

Figure 7.6: The minimal model of the program modelling the water-level monitor.

heads rstate i (for i= 1 to 4) identifies the set of reachable states corresponding
to the location loc i− 1.

CHA Analyser

We use an already existing tool called CHA analyser developed by Kim Henrik-
sen [58] to compute the abstract minimal model (AMM) of a CLP program. It
implements the iterative fixed point algorithm where the transfer function is the
abstract semantics function as defined in [58]. This CHA analyser when input
with a CLP program outputs its abstract minimal model. The application of this
tool is presented in a later section.

Querying the minimal model

So computed minimal model (whether concrete or abstract) is queried with a goal
corresponding to the existential-liveness or universal-safety property. We use the
SICStus Prolog with the CLPQ package to query the minimal model.

Safety property verification: Recall (from Chapter 5) that to verify the safety
property AGp, the minimal model is is queried with a goal of the form

← c¬p(X̄), rstate(X̄)
where c¬p(X̄) is the constraint corresponding to the proposition ¬p. The failure of
this goal means there is no reachable state where the safety is violated and hence
the safety property holds. To verify the existential property EFp, the goal is of
the form

← cp(X̄), rstate(X̄)
where cp(X̄) is the constraint encoding the proposition p. This is illustrated in
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the following example (Example 40). As mentioned earlier, the LOGEN tool
even specialises the rstate/1 predicate. Consequently, the minimal model has
constrained atoms corresponding to each of the specialised version of the rstate/1
predicate. So if there are n locations then the minimal model is comprised by the
constrained facts with the heads rstate 1/1, . . ., rstate n/1. Then the atom
rstate/1 in the goal is replaced with the disjunction

∨i=n
i=1 (rstate i(X̄)).

Example 40. Consider the following two properties of the water-level monitor:
(i) AG(w ≤ 12) and (ii) EF (w = 10). The safety property is verified by querying
the minimal with the goal:
← (rstate 1( ,W, , ) ∨ rstate 2( , ,W, ) ∨ rstate 3( , ,W, )
∨ rstate 4( ,W, , )) ∧ (W > 12)

where W is the variable corresponding to water level w. To verify the liveness
property, the constraint in the previous goal is replace with the constraint W = 10.
Since the minimal is queried using the SICStus Prolog system, first the minimal
model is rewritten in a form accepted by SICStus and is queried with the mentioned
goals. The goal corresponding to AG W > 12 (resp. EF W = 10) fails (resp.
holds), hence the property is proved to hold.

The tool chain to accomplish the verification recipes of Chapter 5 is shown in
Figure 7.7. Whenever TPCLP does not terminate, the TPCLP tool in the tool
chain is replaced with the CHA tool to compute the abstract minimal model. To
handle such cases, the TPCLP tool in the tool chain is replaced with the CHA
tool. The computation times of the TPCLP and CHA tools are summarised in
Tables 7.5 and 7.6, respectively.

7.2.2 Proof techniques II

The verification recipes explained in Chapter 6 make use of the model checking
algorithms. The essential steps in these recipes are: (i) construct the abstract
state space and the Galois connection; (ii) perform the abstract model checking
following the verification recipes presented in Chapter 6.

7.2.3 Abstract domain construction step

In this step, the abstract state space is constructed as explained in Chapter 6.
This construction phase is also integrated into the TPCLP tool. Recall that the
minimal model of the specialised program in minimal model computation phase
is a set of constraint atoms of the form rstate(X̄) ← c1(X̄), . . . , rstate(X̄) ←
cn(X̄). The TPCLP tool defines the abstract domain whose elements are the
regions defined by each constraint ci(X̄) (1 ≤ i ≤ n). Example 41 illustrate the
construction of abstract domain. Defining the Galois connections becomes trivial
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Figure 7.7: Minimal model tool chain
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version(1,rstate 1(A,B,C,D),

[D=4,-1*A> -10,1*A>=0,1*A+ -1*B=0,1*A+ -1*C=0]).

version(2,rstate 2(A,B,C,D),

[D=5,-1*C> -2,1*C>=0,1*A+ -1*C=0,1*B+ -1*C=10]).

version(3,rstate 3(A,B,C,D),

[D=6,-2*C> -7,1*C>=0,1*A+ -1*C=2,1*B+2*C=12]).

version(4,rstate 4(A,B,C,D),

[D=7,-1*C> -2,1*C>=0,1*A+ -1*C=0,1*B+2*C=5]).

version(5,rstate 1(A,B,C,D),

[D=4,-1*C> -9,1*C>=0,1*A+ -1*C=2,1*B+ -1*C=1]).

Figure 7.8: The set of abstract states corresponding to minimal model of Figure
7.6

if the abstract state space is a partition of the concrete state space. For this reason
we can construct abstract state space that is a partition.

Example 41. The set of abstract reachable states generated by TPCLP is shown
Figure 7.8. So there are five abstract states in this case, one each corresponding
to the five constrained facts in the minimal model. Each of the version/3 fact
defines an abstract state. The first argument is the identifier for the abstract
state; the second argument identifies the location of the abstract state; while the
third argument, which is a list, defines the set of concrete states abstracted by this
abstract state.

In the above example, the abstract states were disjoint1. But we do not always
get a disjoint abstract state space. Several refinement and reduction strategies
exist to construct a disjoint partition from a non-disjoint partition. In this disser-
tation, we consider a simple strategy. When the states are not disjoint, we define a
new abstract state as the union of the overlapping abstract states and thus define
a new disjoint abstraction. Such new abstract state abstracts the union of the sets
of concrete states abstracted by the non-disjoint abstract states.

Abstract model checking step

In this phase, the system is model checked for a given CTL formula.

AMC Tool An abstract model checking tool named AMC is written by imple-
menting the abstract CTL semantics function of Definition 63. This tool accepts

1Two abstract states are said to be disjoint if their correspondent sets of concrete sets are
disjoint.
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three inputs: (i) the specialised transition system CLPSpec from LOGEN ; (ii) the
minimal model M[[CLPSpec]] output from the TPCLP or CHA tool and (iii) the
CTL formula φ to be checked, and returns the set of abstract states, [[¬φ]]a, where
the negated CTL formula ¬φ holds. This tool is also written in Ciao Prolog and
makes use of the Yices SMT solver and the Parma Polyhedra Library (as explained
in 6.3.5). The following example illustrates the application of the AMC.

Example 42. We verify the water-level monitor for the following properties:

1. AF(w ≥ 10): This formula expresses the property of “on all paths the water
level (W ) eventually reaches at least a level of 10”.

2. EF(w = 10): This formula expresses the property of “on some path w equals
10”.

3. AG(0 ≤ w ∧ w ≤ 12): This formula expresses the safety property of “always
globally w remains between 0 and 12”

4. AF(AG(1 ≤ w ∧ w ≤ 12)): This formula states that “on all paths in future
the water level ranges between 1 and 12”.

5. AG(w = 10 → AF (w < 10 ∨ w > 10)): This formula states that “on every
path the water level cannot get stuck at 10”.

6. EU(w < 12,AU(w < 12, w ≥ 12)): This formula states that “there is a path
such that W remains less than 12 until it hits 12”.

7. AG(AG(AG(AG(AG(0 ≤ w ∧w ≤ 12))))): This formula is equivalent to the
safety formula AG(0 ≤ w ∧ w ≤ 12).

To model check the water level monitor, the abstract model checker is input
with the three inputs, namely:

1. the specialised program of Figure 7.5;

2. the set of abstract reachable state space that is derived (as explained in 6)
from the minimal model of Figure 7.6;

3. the CTL formula to be verified.

The [[¬φ]]a output for each of the properties is shown in Table 7.1.
The abstract state corresponding to the initial state is 1 i.e. astates(w = 0∧x =

0) = {1}. Following the abstract model checking recipe, for the first four formulas
in the table (Table 7.1), since [[¬φ]]a ∩ {1} = ∅, the formulas are proved to hold;
while for the fifth and seventh formulas since [[¬φ]]a ∩ {1} 6= ∅ we cannot conclude
anything about their correctness. For the sixth formula, we have not proved whether
the state where w = 10 is actually visited, though [[¬φ]]a ∩ {1} = ∅ we cannot
conclude that the property holds. This result is trivial if w = 10 is never reached.
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φ [[¬φ]]a Time [[¬φ]]a ∩ Ia
(secs.)

AF(w ≥ 10) ∅ 0.015 ∅
AG(0 ≤ w ∧ w ≤ 12) ∅ 0.011 ∅
AF(AG(1 ≤ w ∧ w ≤ 12)) ∅ 0.018 ∅
AG(AG(AG(AG(AG(0 ≤ w ∧ w ≤ 12))))) ∅ 0.021 ∅
EF(w = 10) {1, 2, 3, 4, 5} 0.009 {1}
AG(w = 10→ AF (w < 10 ∨ w > 10)) ∅ 0.020 ∅
EU(w < 12,AU(w < 12, w ≥ 12)) {1, 2, 3, 4, 5} 0.020 {1}

Table 7.1: AMC Results for water-level monitor

7.2.4 Abstract Domain Refinement

With our abstract model checking, due to coarseness of the abstraction, it is very
much possible that the correctness of a property cannot be established. An abstrac-
tion is deemed to be imprecise for a property φ if and only if I ∈ γ([[φ]]a∩ [[¬φ]]a) or
α(I) ∈ [[φ]]a∩ [[¬φ]]a where α and γ are the abstraction and concretisation functions
defining the Galois connection.

In Example 42, due to the imprecise abstraction, the correctness of the formulas
EF(w = 10) and EU(w < 12,AU(w < 12, w ≥ 12)) cannot concluded. To model
check a formula of the form EF(w = VALUE), it becomes necessary to refine the
abstract state where w can take a value of VALUE into three abstract states. The
reason to do this refinement is that the transition relation we define does permit
jumps between the states that are visited via delay transitions within the same
location. Such jumps imply that it is possible to bypass the intermediate states
that are actually visited in the original system. This is the loss of precision due
to abstraction and our transition relation encoding. Therefore, though w = 10 is
visited in the original system, in our encoding this state where w = 10 is bypassed.
But by partitioning those abstract states where w = 10 and refining such states,
our transition relation enforces that this state be visited. The refined abstraction,
which is a refinement of the abstraction defined in Figure 7.8, is given in Figure
7.9.

Similarly the formula EU(W < 12,AU(W < 12,W ≥ 12)) can be model
checked by refining the original abstraction with respect to W = 12. With these
refined abstractions, the AMC results for the formulas EF(W = 10), AG(W =
10→ AF (W < 10∨W > 10)) and EU(W < 12,AU(W < 12,W ≥ 12)) are shown
in Table 7.2. Since a[[¬φ]] = ∅, with the refined abstractions, these three properties
are proved to hold.
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version(v1 0,rstate 1(A,B,C,D),[10>B,D=4,-1*A> -10,1*A>=0,1*A+
-1*B=0,1*A+ -1*C=0]).
version(v2 0,rstate 2(A,B,C,D),[B=10,D=5,-1*C> -2,1*C>=0,1*A+
-1*C=0,1*B+ -1*C=10]).
version(v2 1,rstate 2(A,B,C,D),[B>10,D=5,-1*C> -2,1*C>=0,1*A+
-1*C=0,1*B+ -1*C=10]).
version(v3 0,rstate 3(A,B,C,D),[B=10,D=6,-2*C> -7,1*C>=0,1*A+
-1*C=2,1*B+2*C=12]).
version(v3 1,rstate 3(A,B,C,D),[B>10,D=6,-2*C> -7,1*C>=0,1*A+
-1*C=2,1*B+2*C=12]).
version(v3 2,rstate 3(A,B,C,D),[10>B,D=6,-2*C> -7,1*C>=0,1*A+
-1*C=2,1*B+2*C=12]).
version(v4 0,rstate 4(A,B,C,D),[10>B,D=7,-1*C> -2,1*C>=0,1*A+
-1*C=0,1*B+2*C=5]).
version(v5 0,rstate 1(A,B,C,D),[10>B,D=4,-1*C> -9,1*C>=0,1*A+
-1*C=2,1*B+ -1*C=1]).

Figure 7.9: Refinement of the abstraction of 7.6
.

7.3 Verification of other systems

7.3.1 Task scheduler

In this section, we verify the correctness of a task scheduler against three CTL
formulas.

A task scheduler is that component of a multi-tasking real-time operating sys-
tem which is responsible for scheduling the application tasks to meet their dead-
lines. We consider a task scheduler defined in [7]. This system has two tasks,
namely task1 and task2, with the execution times of 4 and 8 seconds, respectively.
These tasks are scheduled in response to the interrupts. There are two interrupts,
namely interrupt1 and interrupt2. The interrupt1 might arrive at most every 10
seconds; while interrupt2 arrives at most every 20 seconds. The interrupt1 and

φ [[¬φ]]a Time (secs.)
EF(W = 10) ∅ 0.028
AG(W = 10→ AF (W < 10 ∨W > 10)) ∅ 0.032
EU(W < 12,AU(W < 12,W ≥ 12)) ∅ 0.041

Table 7.2: AMC Results for water-level monitor with refined abstractions
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Figure 7.10: Tasks and Scheduler LHA models

interrupt2 are serviced with task1 and task2 respectively. When the high prior-
ity task task2 is requested while the low priority task task1 is running, task1 is
pre-empted and task2 begins executing. Figure 7.10 shows the LHA model (taken
from [57]) for the interrupts and the tasks.

In the LHA model, the variables:

1. C1, C2 model the clocks corresponding to the two interrupts interrupt1 and
interrupt2, respectively;

2. X1, X2 model the clocks that keep track of the lapsed execution times cor-
responding to the tasks task1 and task2, respectively;

3. K1, K2 are the number of requests for the tasks task1 and task2, respec-
tively.

We verify the following properties of this system:

1. EF(K2 = 1): In future eventually the high priority task task2 is scheduled.

2. AG(K2 > 0→ AF (K2 = 0)): Always the high priority task when scheduled
will always complete its execution.

3. AG(K2 ≤ 1): Always globally the number of requests for the higher priority
task never exceeds 1.
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φ [[¬φ]]a Time (secs.)
EF(K2 = 1) ∅ 0.208
AG(K2 ≤ 1) ∅ 0.031
AG(K2 > 0→ AF (K2 = 0)) ∅ 0.146

Table 7.3: AMC Results for the Scheduler properties

As illustrated in the verification of water-level system, the textual-LHA model
SchtextLHA of this scheduler is first input to the LHA2CLPR compiler, which
outputs both the CLP program and its annotation. These two outputs are fed
into LOGEN tool, which generates the specialised program. The TPCLP when
input with this file generates: (i) the reachable states file; (ii) the abstract states
file.

To do reachability analysis we load the minimal model [[SpecSch]] into SICStus
and query for the properties to be checked; while to do model checking the AMC
tool is input with the specialised program SpecSch and [[SpecSch]]

a. Here [[SpecSch]]
a

stands for the abstraction derived from [[SpecSch]].

Reachability Analysis

The first property i.e. EF(K2 = 1) can be checked following the recipe described
in Section 5.3. As per this recipe, the minimal model is queried with the goal
← rstate( C1, C2, X1, X2, K1, K2, T, L), K2 = 1. Since this goal succeeds,
the property is proved to hold.

The third property i.e. AG(K2 ≤ 1) is verified following the recipe described in
Section 5.2. According to this recipe, the minimal model is queried with the goal
← rstate( C1, C2, X1, X2, K1, K2, T, L), K2 > 1. The constraint K2 > 1
is the negation of the safety proposition K2 ≤ 1. This goal succeeds and thus the
property is proved to hold.

Abstract model checking

The second property AG(K2 >= 1)→ AF (K2 = 0) being a path property cannot
be verified with reachability analysis alone. We use the AMC tool for this formula.
The AMC tool when input with the appropriate files and the formula φ returns the
set of abstract states [[¬φ]]a as shown in Table 7.3. This table reports the model
checking results for all the three properties.
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7.3.2 Gas burner controller

In a gas stove or burner, the heat is generated by burning the gas. These gas stoves
or burners, for safety, are equipped with a control system that make sure that no
gas leaks beyond safety limits. This control system makes use of a thermostat.
This system on detecting the absence of flame, while the gas valve still being
in on position, should close the valve before the volume of gas leaked crosses a
predetermined threshold. This control system was first formalised in [107] where
a formal model in the language of Duration calculus is defined. The LHA model
(shown in Figure 7.11) for this system is defined in [62].

In the LHA, the locations l0 and l1 correspond to the gas-leaking state no-
leak states respectively. The variable x controls the time spent in each of the
locations. The variable z records the total time spent in the leaking state; while
variable y records the total time lapsed. The safety requirement on this system
is that “in any interval of time of at least 60 seconds, the leaking time does not
exceed 5 % of the total time”. This requirement translates2 to the safety property
AG(y ≥ 60→ 20 ∗ z ≤ y). The safety proposition is ¬(y ≥ 60) ∨ (20 ∗ z ≤ y).

For this system, since the TPCLP tool does not terminate, the abstract min-
imal model is computed by using the CHA tool. This abstract minimal model is
shown in Figure 7.12. This minimal is translated into a SICStus Prolog of the form
shown in 7.13. This program is queried with the goal ← rstatei(x, y, z, t), (y ≥
60 ∧ 20 ∗ z > y) (for i= 1 to 2). Here the constraint (y ≥ 60 ∧ 20 ∗ z > y) is the
negation of the safety proposition mentioned above. This query when expressed
in SICStus Prolog takes the form of ← rstatei(X, Y, Z, T ), Y ≥ 60, 20 ∗ Z > Y .
This goal fails, and hence the safety property is proved to hold.

7.3.3 Temperature controller

This is a control system that monitors the temperature of a nuclear reactor. The
LHA model of this stem is shown in Figure 7.14 (taken from [62]). In this system,

2The requirement is when y ≥ 60 z should be less than 5% of y i.e. z ≤ y/20 or 20 ∗ z ≤ y.

Figure 7.11: Gas burner LHA model
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rstate 2(A,B,C,D) :- [-1*A+1*B+-1*C>=0,

-1*A+1*B+ -31*C>= -30,

1*C>=0, 1*A>=0,

1*A+ -1*D=0]

rstate 1(A,B,C,D) :- [1*C+ -1*D>=0, 1*D>=0,

1*B+ -31*C+30*D>=0, -1*D>= -1,

1*A+ -1*D=0]

Figure 7.12: Gas burner’s abstract minimal model

:- use module(library(clpq)).

rstate 2(A,B,C,D) :- {-1*A+1*B+ -1*C>=0,

-1*A+1*B+ -31*C>= -30,

1*C>=0, 1*A>=0, 1*A+ -1*D=0}.
rstate 1(A,B,C,D) :- {1*C+ -1*D>=0, 1*D>=0,

1*B+ -31*C+30*D>=0,

-1*D>= -1,1*A+ -1*D=0}.

Figure 7.13: Gas burner model in SICStus Prolog

the temperature is controlled by lowering one of the two cooling rods rod1 and
rod2 into the reactor. There are three variables: x measuring the temperature and
y1, y2 measuring the time lapsed after the previous instance when rod1 and rod2

were used. A cooling rod is put into use when the temperature hits 550. The
constraint is that a cooling rod can only be deployed if it has been free for at least
20 seconds. When one cooling rod is not available the other cooling rod is used.
So the unsafe condition that needs to be avoided is x >= 550∧ y1 < 20∧ y2 < 20
i.e. the temperature exceeding 550 while both rods have not been free for over 20
seconds.

This LHA has three locations: l0, l1 and l2. In l0, the temperature rises no
more than 550 at the rates ranging in the interval [1, 5]. In l1 (resp l2), rod1 (resp.
rod2) cools the temperature at the rates ranging in the interval [−5,−1]. In all

Figure 7.14: The Temperature Controller LHA
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rstate 1(A,B,C,D) :- [1*A+ -1*D>=0,

2*A+51*C+ -53*D>=1020,1*D>=0,

2*A+51*B+ -53*D>=1020,-1*A+5*D>= -510,

-1*A>= -550]

rstate 2(A,B,C,D) :- [51*C+ -51*D>=344,

1*A>=510,1*A+5*D>=550,

-1*A+ -1*D>= -550,

1*B+ -1*D>=20]

rstate 3(A,B,C,D) :- [1*C+ -1*D>=20,

-1*A+ -5*D>= -550,51*B+ -51*D>=344,

1*A>=510,1*A+9*D>=550]

Figure 7.15: The Temperature Controller abstract minimal model

the locations, y1 and y2 change at the rate of +1.
For this system also the TPCLP does not terminate, hence the abstract

minimal model is computed by using the CHA tool. This abstract minimal
model is shown in Figure 7.15. As always, this minimal model is translated
into a form accepted by SICStus Prolog. This program is queried with the goal
← rstatei(x, y1, y2, t), (x = 550 ∧ y1 < 20 ∧ y2 < 20 (for i= 1 to 3). Here the
constraint (x = 550∧ y1 < 20∧ y2 < 20 defines the unsafe state. This query when
expressed in SICStus Prolog takes the form of:

← rstatei(X, Y 1, Y 2, T ), X = 550, Y 1 < 20, Y 2 < 20.
This goal fails, and hence the safety property is proved to hold.

7.3.4 Train Gate Controller

This is a control system involving three components: (i) a train; (ii) a controller
and (iii) a gate guarding the rail-road crossing. The LHA models for each of these
components is shown in Figure 7.16. The job of this system is to close the gate
when a train is approaching the crossing point. These three components interact
by raising events. The complete system is a product of these three components.

The train signals its approach towards the cross when it is 1000m away from
the cross by issuing the approach event; while it signals its exit from the critical
zone when it is 100m past the cross by issuing the exit event. The variable x in
the train LHA models the distance of train from/past the crossing point. The
controller on receiving the approach event signals the gate to close by issuing
the lower event; while on receiving the exit event signals the gate to open the
gate by issuing a raise event. The maximum reaction time of the controller is
5 seconds i.e. it responds to the events from the train with in 5 seconds. The
variable z in the controller LHA models this reaction time. The gate on receiving
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Figure 7.16: The Train gate controller LHA

the raise (resp. lower) event, raises (resp. lowers) the gate at the rate of 20
degrees/second. When the gate is at an angle of 0 (resp. 90) degrees it is in close
(resp. open) state. The variable y models the gate angle. The speed of train varies
as following: (a) x ≥ 1000 : −52 ≤ ẋ ≤ −48; (b) 0 ≤ x ≤ 1000 : −52 ≤ ẋ ≤ −40
and (c) 0 ≤ x ≤ 100 : 40 ≤ ẋ ≤ 52. The sign of the speed signifies whether its
approaching or receding from the cross.

Of this system, we wish to check the following CTL formulas:

1. AG(x ≤ 10→ y = 0);

2. AF(y = 0);

3. AG(AF(y = 90));

4. AG(y = 0→ AF(y = 90));

5. AG(y = 90→ AF(y = 0));
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φ [[¬φ]]a Time (secs.)
AF(y = 0) ∅ 0.307
AGAF(y = 90) ∅ 0.401
AG(y = 0→ AF(y = 90)) ∅ 0.409
AG(y = 90→ AF(y = 0)) ∅ 0.322

Table 7.4: AMC Results for Train Gate Controller

The first formula states the property that “whenever the train is within a 10m
distance from the cross the gate is always closed”. The second formula states the
property that “always eventually the gate closes”; while the third formula states
that “always globally always in future the gate opens”. The fourth (resp. fifth)
formula states the property that “a closed (resp. open) gate always eventually
opens (resp. closes)”.

We prove the first formula by reachability analysis, while the AMC is em-
ployed to verify the remaining. First, the product LHA of the three components
is constructed whose minimal model is computed via LHA2CLPR, LOGEN and
TPCLP tool chain. This minimal model is queried with the safety violating goal.
Since no such unsafe state exists, the first property holds. The AMC results for
these formulas are reported in the Table 7.4.

7.3.5 Fischer Protocol

In multi-process systems, to assure mutually exclusive access to shared resources
a protocol is followed. The Fischer protocol [83] is one such protocol. In [7], an
LHA model for a two process Fischer protocol is defined.

Consider an asynchronous distributed system with two processes P1 and P2

each having their own local clocks. Each process’s execution involves an atomic
read and write operations on a shared memory. Thus there is a critical section in
each process. The Fischer protocol ensures that at any time instance at most one
of the two processes is in its critical section. The implementation of this protocol
can be seen in the pseudo-code of the process Pi shown in Figure 7.17.

Here k is the shared variable between the two processes P1 and P2. The process
Pi is allowed into critical section iff k = i. Each process has a local clock. The
instruction delay b delays the process by b time units as measured by the process’s
local clock. The assignment instruction k := i corresponds to a write access that
takes a time units. In fact, a, b are parameters in this system. As is quite common
in asynchronous systems, the local clocks may be inaccurate and might even have
different rates of ticking. In this model, the clock of P2 ticks at the rate of 0.9 to
1.1 times the ticking rate of the clock of P1. [7] gives the two LHAs corresponding
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repeat forever
repeat until k = i

await k = 0;
k := i;
delay b;

Critical section i
k := i;

Figure 7.17: The pseudo-code for Process Pi.

Figure 7.18: The Fischer protocol product LHA

to the two models. But we consider the product LHA as defined in [57]. This
product LHA is shown in Figure 7.18. The variables x, y correspond to the rates
of delays of P1 and P2 respectively. In location l0, P1 is idle; while in l1 it has read
k = 0. On the discrete transition l0 to l1, P1 is supposed to set k to 1, so it is the
last time P2 can read k = 0. In l2, P1 waits for b time units, following which two
transitions might occur: either b lapses and P1 enters its critical section i.e. l4 is
entered; or on P2 setting k to 2 i.e. l3 is entered and thus P1 is forbidden to enter
its critical section.

The location l4 corresponds to P1 being in the critical section. If in this location,
P2 sets k to 2, it may also enter critical location. The location l5 models this
situation where both P1 and P2 are both in their critical sections. We need to
prove that l5 is never entered. To check this property, we compute the minimal
model and see the constraints on the reachable states corresponding to this location
l5. The minimal model of the specialised CLP program of this LHA is shown in
Figure 7.19. Recall that the reachable states with li as their location is defined

138



rstate 1(A,B,C,D,E,F) :-
F=4,1*D>=0,1*C>=0,-10*B+11*E>=0,
10*B+ -9*E>=0,1*A+ -1*E=0.

rstate 2(A,B,C,D,E,F) :-
F=5,-10*B+11*E>=0,-1*A+1*E>=0,
10*B+ -9*E>=0,1*A>=0,1*D>=0,-1*A+1*C>=0.

rstate 3(A,B,C,D,E,F) :-
F=6,-1*A+1*E>=0,1*C>=0,1*D>=0,
11*A+ -10*B>=0,-9*A+10*B>=0.

rstate 4(A,B,C,D,E,F) :-
F=7,1*C>=0,-9*A+10*B>=0,
11*A+ -10*B>=0,-1*A+1*E>=0,1*D>=0.

rstate 5(A,B,C,D,E,F) :-
F=8,1*A+ -1*D>=0,11*A+ -10*B>=0,
1*D>=0,-9*A+10*B>=0,-1*A+1*E>=0,1*C>=0.

rstate 1(A,B,C,D,E,F) :-
F=4,1*A+ -1*D>=0,11*A+ -10*B>=0,
1*D>=0,-9*A+10*B>=0,-1*A+1*E>=0,1*C>=0.

rstate 6(A,B,C,D,E,F) :-
F=9,1*A+ -1*D>=0,11*A+ -10*B>=0,
11*A+ -10*B+10*C+ -11*D>=0,10*C+ -9*D>=0,
-9*A+10*B>=0,1*D>=0,-1*A+1*E>=0.

rstate 2(A,B,C,D,E,F) :-
F=5,-10*B+11*E>=0,1*A>=0,
-9*A+10*B+ -9*D>=0,-1*A+ -1*D+1*E>=0,1*D>=0,-1*A+1*C>=0.

Figure 7.19: The minimal model of the two process Fischer protocol system.

by the constrained fact rstate i+ 1(X̄). The first two elements A,B in the six-
element list are the two clock variables x, y while the following two C,D are a, b
and the remaining E,F are time variable t and location-index variable. So in
rstate 6/6, we have a constraint 10 ∗ C + −9 ∗ D ≥ 0 i.e. the variables a and
b are related by 10 ∗ a ≥ 9 ∗ b. Thus by choosing the parameters a, b such that
10 ∗ a < 9 ∗ b the location l5 is never visited. Thus with TPCLP we can do such
parametric analysis as well.

7.4 TPCLP and CHA computation times

In Table 7.5, we summarise the TPCLP results of computing a model for each of
the six LHAs presented in this chapter. The number of locations in the automaton
is Q and number of discrete transitions is ∆. The number of clauses in the trans-
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Name Q ∆ |CLP | TPCLP (secs.)
Fischer Protocol 6 8 9 0.023
Leaking Burner 2 2 5 ∞
Scheduler 3 11 17 0.216
Train Gate Controller System 36 200 145 0.154
Temperature Controller 3 4 5 ∞
Water Level 4 4 5 0.022

Table 7.5: TPCLP Results

lated CLP programs includes the clauses for the delay transitions. Timings are
given in seconds and the symbol∞ indicates failure to terminate within a time-out
duration of 300 seconds. The symbol ∞ in Table 7.5 implies the non-termination
of TPCLP.

Specialisation Vs. Efficiency Since the unspecialised versions of the CLP en-
codings of LHAs contain list arguments, TPCLP cannot compute minimal model
of such CLP programs. Therefore it is not possible to measure the computational
efficiency gained by specialisation.

Table 7.6 summarises the results of computing the approximate minimal models
of the leaking burner and temperature controller systems.

Name Q ∆ |CLP | CHA (secs.)
Leaking Burner 2 2 5 0.028
Temperature Controller 3 4 5 0.042

Table 7.6: CHA Results

Memory utilisation. The experiments were conducted on a computer with an
Intel XEON CPU running at 2.66GHz and with 4GB RAM. In all of the above
experiments, none of the tools (TPCLP, CHA or abstract model checker) utilised
more than 2GB RAM.

Summary

In this chapter, we demonstrated how LHAs can be modelled and verified by
applying the modelling and verification concepts defined in this dissertation. We
only focussed on the CLP models that make use of the forwards reasoning driver.
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The next chapter presents the existing work related to the CLP-based techniques
for modelling and verification of hybrid systems.
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Chapter 8

Related work

The idea of modelling and verifying transition systems of various kinds as CLP
programs goes back many years. Several works also exist where infinite state sys-
tems’ verification is pursued by applying abstract interpretation. In this chapter,
we review existing works on CLP-based verification. These works cover systems
with both discrete and continuous state variables and consider both safety and
liveness properties. However no comprehensive approach exists to verify arbitrary
temporal properties for both finite and infinite systems. There are frameworks
for abstract model checking that are not based on CLP; we argue that our ap-
proach has advantages over previous work and gives a direct, elegant and practical
approach for combining abstract interpretation and model checking.

We survey the related work from three perspectives, namely, (i) the modelling
of embedded systems in CLP; (ii) the verification of safety and liveness properties
by computing minimal models and (iii) abstract model checking, which are the
three main contributions of this dissertation.

CLP-based modelling and verification of embedded systems

Gupta and Pontelli [55] are the first to propose a CLP-based framework to verify
hybrid systems specified in the language of Timed Automata (TA). Here the TA
model of a system is represented by a CLP program, which is executed to ver-
ify properties. The meaning of a timed automaton is given by the sequence of
events generated by it. So to verify a property, the executable CLP programs are
queried with goals, which specify event sequences (characterising a property) with
constraints.

This work presents two variants of system modelling: (i) the syntax of timed
automata is modelled with DCG clauses, while the semantics is modelled with
constraint clauses; (ii) syntax and semantics are both modelled with CLP clauses.
However, the translation scheme from TA to CLP is not formally defined. When
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a system comprises more than one automaton, a driver interfaces the individual
components.

Since the CLP program is executed to verify a property, this approach is based
on the procedural semantics, it has obvious limitations as a proof procedure for
infinite behaviours. Besides this limitation, they use a non-standard property spec-
ification language. In this language, it might not be possible to state equivalents
of nested CTL properties.

Jaffar et al [70] also propose a CLP based framework to verify TA models.
This framework defines a systematic scheme for translating the language of TA
into CLP. They define a new assertion language for specifying system properties.
Here also the CLP program is executed to verify a property. The proof method
relies on the techniques of tabling [115] and co-induction [113].

Our work differs from the above two works [70] [55] in two aspects: (i) we model
the LHA specifications and (ii) we consider the temporal logic of CTL that is a
more standard property specification language in literature. Though comparing
various formalisms is not the aim of our work, it is noteworthy that LHAs are
more expressive than other formalisms such as Timed Automata (TA) [6] or other
finite automata as discussed in [21]. Thus we cover a wider range of systems than
them. Since they do not define the correspondence of their property specification
language with standard temporal logics, it is not straightforward to identify the
class of CTL properties that are not taken care by them. However, it seems that
specifying nested CTL properties in their language is not possible.

Hickey and Witternberg [65] model hybrid systems in a new CLP language,
called Analytic Constraint Logic Programming (ACLP) [63], a higher order con-
straint language, to model hybrid systems. In particular, the hybrid systems are
modelled in CLP(F) [64], a kind of ACLP, having the capability to encode (arbi-
trary) ordinary differential equations. However, though they can model non-linear
hybrid systems, only safety properties could be verified in this work.

Falaschi and Villanueva [42] propose a model checking methodology to verify
reactive systems modelled in the language of timed concurrent constraint pro-
gramming (tccp) language. In this work: (i) a tccp model is first compiled into
a tccp structure, which is a variant of Kripke structure; (ii) the reactive prop-
erties are specified in a linear temporal language (analogous to Linear Temporal
Logic (LTL)) suitable for reasoning about tccp models. The developed model
checker proves a property by checking that there is no path in the tccp structure
along which the negation of the property holds. Since: (i) the tccp models can be
expressed in the language of linear TA (LTA); and (ii) the language of LHA being
more powerful than that of TA, it is not clear whether tccp is powerful enough to
specify LHAs, particularly, their multi-rate dynamics. Furthermore, they consider
properties specified in a linear-time temporal language, while we consider the CTL
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language, which is a branching-time temporal language.

Other CLP transition system models

Delzanno and Podelski [35] develop techniques for modelling and verifying discrete
transition systems. Here a systematic scheme to translate the guarded-command
specification language extended with shared variables [112] into CLP programs is
presented; while the properties are specified in CTL. They define [[φ]] in terms of the
CLP fixed point semantics of a constraint logic program, which is a composition
of CLP program encoding the system and a CLP program encoding the CTL
property. Only the properties of the form AFp, EFp, AGp, EGp can be verified in
this work.

CLP interpreters for temporal formulas

A somewhat different but related CLP modelling and proof approach is followed in
[19, 88, 96, 36, 43, 99, 100]. This is to encode a proof procedure for a modal logic
such as CTL, µ-calculus or related languages as a logic program, and then prove
formulas in the language by running the interpreter (usually with tabling to ensure
termination). The approach is of great interest but adapting it for abstraction
of infinite state systems seems difficult since the proof procedures themselves are
complex programs and include negation. The programs usually contain a predicate
encoding the transitions of the system in which properties are to be proved, and
thus could in principle be coupled to our translation.

In almost all of the above cited works, they consider the minimal fragment of
a temporal logic. It is minimal in the sense that any formula (in the consider tem-
poral language) could be written using this minimal fragment and negation. They
define a CLP interpreter based around this minimal fragment. The CLP program
corresponding to a formula (not from the minimum fragment) often involves nega-
tion. The execution of such CLP programs requires a CLP implementation with
sound negation (like constructive negation [114]). But such CLP implementations
are still being researched. Furthermore, for the same reason and negation being
antitone, it is difficult to approximate negation. Consequently verification based
on abstract interpretation requires that the solution set be under-approximated,
which is not easy. For these reasons, the cited works are restricted to a subset of
CTL.

In our approach, since we consider full CTL, any arbitrary formula can be
reduced to a NNF formula. Consequently the limitations implied by the negation
are totally bypassed. Besides this, in these cited works, the full prover is run for
each formula to be proved, whereas in our case, a minimal model is computed once
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and the properties of the form AGp and EFp are proved by querying this minimal
model.

Direct analysis of Hybrid systems

Another direction we could have taken is to develop a direct translation of LHA
semantics into CLP, without the intermediate representation as a transition sys-
tem. For example a “forward collecting semantics” for LHAs is given in [56], in the
form of a recursive equation defining the set of reachable states for each location.
It would be straightforward to represent this equation as a number of CLP clauses,
whose least model was equivalent to the solution of the equation. A technique sim-
ilar to our method of deriving the d predicate for the constraints on the derivatives
could be used to model the operator S↗D in [56] representing the change of state
S with respect to derivative constraints D. The approach using transition systems
is a little more cumbersome but gives the added flexibility of reasoning forwards
or backwards, adding traces, dependencies and so on as described in Chapter 5.
The clauses we obtain for the forward transition system (after partial evaluating
the transition predicate) are essentially what would be obtained from a direct
translation of the recursive equation in [56].

Other Model checkers

Uppaal [14] is a CTL model checker. The system to be verified is input as a TA. As
mentioned earlier, the language of LHA is more expressive than the language of TA.
Consequently, from the modelling perspective, our framework has two advantages
over the Uppaal [14] model checker or any other TA model checkers. Firstly, we
can directly handle LHAs having multi-rate dynamics1 , whereas Uppaal mandates
that an LHA specification be compiled down into a TA specification before being
verified. Secondly, Uppaal restricts the clock variables to be compared only with
natural numbers, i.e. guards such as x > 1.1, 10 ∗ x > 11 or x > y are not
permitted [75]. Besides this, Uppaal cannot verify nested CTL formulas excepting
those of the form AG(EX true) and AG(p→ AFq) where p, q are propositions.

HYTECH [61] is a model checker for the systems specified in the language
of LHA. Here the properties are specified in the language of ICTL, which is an
extension of CTL. They use standard model checking algorithms. As with many
of the other approaches, the HYTECH implementation does not handle the full
language2.

1A timed automaton has variables called clocks that vary at a single rate i.e. ẋ = 1, ẏ = 1,
while an LHA can have variables that vary at different rates i.e. ẋ = 1, ẏ = 2.

2Personal communication with Wong-Toi.
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PHAVer [45] is yet another tool to verify hybrid systems. It can only verify
safety properties.

Abstract model checking

The topic of model-checking infinite state systems using some form of abstraction
has been already widely studied. Abstract model checking is described by Clarke et
al. [24, 73]. In this approach a state-based abstraction is defined where an abstract
state is a set of concrete states. A state abstraction together with a concrete
transition relation ∆ induces an abstract transition relation ∆abs. Specifically,
if X1, X2 are abstract states, (X1, X2) ∈ ∆abs iff ∃x1 ∈ X1, x2 ∈ X2 such that
(x1, x2) ∈ ∆. From this basis an abstract Kripke structure can be built; the
initial states of the abstract Kripke structure are the abstract states that contain
a concrete initial state, and the property labelling function of the abstract Kripke
structure is induced straightforwardly as well. Model checking CTL properties over
the abstract Kripke structure is correct for universal temporal formulas (ACTL),
that is, formulas that do not contain operators EX,EF,EG or EU . Intuitively,
the set of paths in the abstract Kripke structure represents a superset of the paths
of the concrete Kripke structure. Hence, any property that holds for all paths
of the abstract Kripke structure also holds in the concrete structure. If there is
a finite number of abstract states, then the abstract transition relation is also
finite and thus a standard (finite-state) model checker can be used to perform
model-checking of ACTL properties. Checking properties containing existential
path quantifiers is not sound in such an approach.

This technique for abstract model checking can be reproduced in our approach,
although we do not explicitly use an abstract Kripke structure. Checking an ACTL
formula is done by negating the formula and transforming it to negation normal
form, yielding an existential temporal formula (ECTL formula). Checking such a
formula using our semantic function makes use of the pred∃ function but not the
pred∀ function. For this kind of abstraction the relation on abstract states s→ s′

defined as s ∈ (α ◦ pred∃ ◦ γ)({s′}) is identical to the abstract transition relation
defined by Clarke et al. Note that whereas abstract model checking the ACTL
formula with an abstract Kripke structure yields an under-approximation of the
set of states where the formula holds, our approach yields the complement, namely
an over-approximation of the set of states where the negation of the formula holds.

There have been different techniques proposed in order to overcome the restric-
tion to universal formulas. Dams et al. [31] present a framework for constructing
abstract interpretations for µ-calculus properties in transition systems. This in-
volves constructing a mixed transition system containing two kinds of transition
relations, the so-called free and constrained transitions. Godefroid et al. [52] pro-
posed the use of modal transition systems [85] which consist of two components,
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namely must-transitions and may-transitions. In both [31] and [52], given an ab-
straction together with a concrete transition system, a mixed transition system,
or an (abstract) modal transition system respectively, is automatically generated.
Following this, a modified model-checking algorithm is defined in which any for-
mula can be checked with respect to the dual transition relations. Our approach by
contrast is based on the standard semantics of the µ-calculus. The may-transitions
and the must-transitions of [52] could be obtained from the functions (α◦pred∃◦γ)
and (α ◦ pred∀ ◦ γ) respectively. For the case of an abstraction given by a parti-
tion A = {d1, . . . , dn} it seems that an abstract modal transition system could be
constructed with set of states A such that there is a may-transition di → dj iff
di ∈ (α ◦ pred∃ ◦ γ)({d′j} and a must-transition di → dj iff di ∈ (α ◦ pred∀ ◦ γ)({dj}.
However the two approaches are not interchangeable; in [52] a concrete modal
transition system has the same set of must-transitions and may-transitions, but
applying the above constructions to the concrete state-space (with α and γ as the
identity function) does not yield the same sets of must- and may-transitions (unless
the transition system is deterministic). We have shown that the construction of
abstract transition systems as in [24, 73], and abstract modal transition systems in
particular [31, 52] is an avoidable complication in abstraction. Probably the main
motivation for the definition of abstract transition systems is to re-use existing
model checkers, as remarked by Cousot and Cousot [29] (though this argument
does not apply to modal or mixed transition systems in any case).

The application of the theory of abstract interpretation to temporal logic, in-
cluding abstract model checking, is thoroughly discussed by Cousot and Cousot
[28, 29]. Our abstract semantics is inspired by these works, in that we also proceed
by direct abstraction of a concrete semantic function using a Galois connection,
without constructing any abstract transition relations. The technique of construct-
ing abstract functions based on the pattern (α ◦ f ◦ γ), while completely standard
in abstract interpretation [27], is not discussed explicitly in the temporal logic con-
text. We focus only on state-based abstractions (Section 9 of [29]) and we ignore
abstraction of traces. Our contribution compared to these works is to work out
the abstract semantics for a specific class of constraint-based abstractions, and
point the way to effective abstract model checking implementations using SMT
solvers. Kelb [76] develops a related abstract model checking algorithm based on
abstraction of universal and existential predecessor functions.

Giacobazzi and Quintarelli [51] discuss abstraction of temporal logic and their
refinement, but deal only with checking universal properties. Säıdi and Shankar
[110] also develop an abstract model checking algorithm integrated with a theorem
proving system for handling property-based abstractions. Their approach also uses
abstract interpretation but develops a framework that uses both over- and under-
approximations for handling different kinds of formula.
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Summary

In this chapter, we presented some of the existing works related to modelling and
verification of hybrid systems. We only focussed on the CLP-based approaches
and abstraction-based approaches. The next chapter concludes this dissertation
by presenting a summary of contributions and some directions for further work.
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Chapter 9

Conclusion

The thesis of this dissertation was that general purpose program analyses meant
for constraint logic programs can be applied to the formal verification of high-level
specifications of embedded systems. This dissertation’s investigation into the stated
thesis can be broadly categorised into three parts: (a) modelling of embedded
systems in CLP; (b) verification of embedded system with CLP analyses alone
and (c) verification of embedded systems with abstract model checking in which
constraints play an important role. We chose the LHA language as the high level
specification language in this investigation.

Modelling in CLP

To analyse an LHA model with CLP analysis tools, first the LHA model is mod-
elled as a constraint logic program. We presented (in Chapter 3) a standard
scheme to translate LHA models into constraint logic programs. This translation
is mechanised with a compiler, whose source language is the text LHA and target
language is the CLP. This compiler is also implemented in Ciao Prolog, which is a
CLP language. Since the language of LHA is graphical, a simple textual language
named text-LHA is defined. This part of the dissertation focussed on modelling
of high level models in CLP.

This part of the dissertation contributes to the area of CLP-based system
modelling. On the one hand we add to the literature on CLP modelling techniques
in showing that certain aspects (sufficient enough to prove CTL properties) of the
hybrid dynamics of LHAs can be captured in CLP programs. On the other we
add to the existing literature showing that both forwards and backwards reasoning
models can be generated from a single system specification.
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Verification with CLP analyses

The CLP program encoding an LHA is then specialised using a general purpose
partial evaluator for logic programs. Such a specialised program is then subjected
to static analysis to compute its minimal model, which results in a set of reachable
states (or reaching states) that form the basis for proving arbitrary CTL formu-
las. For a certain class of LHAs, as defined in [62], the concrete minimal model
computation will not terminate in which case we apply the theory of abstract
interpretation and compute the abstract minimal model. In Chapter 5, two meth-
ods were presented to verify simple universal safety and simple existential liveness
properties. These methods were exclusively based on CLP analysis alone.

This parts of the dissertation contributes to the area of CLP-based proof tech-
niques. We add to the existing literature showing that effective reasoning can be
carried out on CLP programs, and display a family of different reasoning styles
(based on forwards and backwards drivers) using a single set of CLP analysis tools.

Abstract model checking

Chapter 6 defined the technique of abstract model checking that can verify arbi-
trary CTL formulas. Here we presented a systematic application of the theory of
abstract interpretation to the algorithmic verification technique of model check-
ing. In this part of the dissertation, we have demonstrated a practical approach
to abstract model checking, by constructing an abstract semantic function for the
CTL language based on a Galois connection. Much previous work on abstract
model checking is restricted to verifying universal properties and requires the con-
struction of an abstract transition system. In other approaches in which arbitrary
properties can be checked [52, 31], a dual abstract transition system is constructed.
Like Cousot and Cousot [29] we do not find it necessary to construct any abstract
transition system, but rather abstract the concrete semantic function systemati-
cally. Using abstract domains based on constraints we are able to implement the
semantics directly. The use of an SMT solver adds greatly to the effectiveness of
the approach.

Further work

Whenever the computation of concrete minimal model becomes impossible, we are
forced to compute an abstract model. Since abstraction introduces loss of preci-
sion, in abstraction-based techniques the challenge is to find precise abstractions.
The choice of precision depends on the chosen abstractions. Currently we use two
abstractions: an abstraction defined in [35] and a classical abstract interpretation
based on convex polyhedral hulls with widening and narrowing operators [30].
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More complex and precise abstractions, such as those based on the power-set do-
main consisting of finite sets of convex polyhedra could be used [10]. The resulting
abstract model can be represented as a set of constrained facts, as in the concrete
model (since a convex polyhedron can be represented as a linear constraint).

Similarly, in the abstract model checking part, to make the implementation
of abstract model checker simpler, we considered the abstractions that partition
the reachable state space. However, we do not always get disjoint partitions from
the TPCLP or CHA tools. When the abstraction is not disjoint, we make it
disjoint by defining a new state that is a union of the overlapping abstract states.
Instead of making a union, which induces more loss in precision, the overlapping
abstract states could be partitioned into finer (disjoint) abstract states. But such
refinement, in the worst case, might produce an exponentially large state space.
Nevertheless, in such cases (where we achieve partition by abstraction), in which
AMC concludes neither the correctness of a CTL formula φ nor the correctness
of the negated formula ¬φ such a refinement becomes the only reasonable way
to proceed. Besides these specific possible improvements, the approach to the
technique of abstract model checking proposed in this dissertation being new – it
is new in the sense of being much simpler than the current approaches – can be
further developed along the following generic lines:

1. Experimenting with a wider range of modelling, programming or specifica-
tion languages.

2. Checking the scalability of the proposed tool chain to verify complex systems.

3. Since our AMC is based on arbitrary Galois connections, richer abstractions
can be pursued. Examples for such abstractions could be power-set domains,
symbolic abstractions to handle richer data structures (arrays, stacks, etc.),
etc.

4. Abstractions not limited to partitions alone can be pursued.

5. Property-based abstraction refinements can be pursued.
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