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An Optimised Algorithm for Determinisation and
Completion of Finite Tree Automata?

John P. Gallagher1,2, Mai Ajspur1, and Bishoksan Kafle1

1 Roskilde University, Denmark
2 IMDEA Software Institute, Madrid
Email: {jpg,ajspur,kafle}@ruc.dk

Abstract. Determinisation is an important concept in the theory of fi-
nite tree automata. However the complexity of the textbook procedure
for determinisation is such that it is not viewed as a being a practical
procedure for manipulating tree automata, even fairly small ones. The
computational problems are exacerbated when an automaton has to be
both determinised and completed, for instance to compute the comple-
ment of an automaton. In this paper we develop an algorithm for de-
terminisation and completion of finite tree automata, whose worst-case
complexity remains unchanged, but which performs dramatically better
than existing algorithms in practice. The algorithm is developed in stages
by optimising the textbook algorithm. A critical aspect of the algorithm
is that the transitions of the determinised automaton are generated in
a potentially very compact form called product form, which can often
be used directly when manipulating the determinised automaton. The
paper contains an experimental evaluation of the algorithm on a large
set of tree automata examples. Applications of the algorithm include
static analysis of term rewriting systems and logic programs, and check-
ing containment of languages defined by tree automata such as XML
schemata.

1 Introduction

Finite tree automata (FTAs) are mathematical machines that define so-called
recognisable tree languages, possibly infinite sets of terms that have desirable
properties such as closure under Boolean set operations, and decidability of
membership and emptiness. In the paper we will give a brief overview of the
relevant features of FTAs, but the main goal of the paper is to focus on two
operations on FTAs, namely determinisation and completion. These operations
play a key role in the theory of FTAs, for example in showing that recognisable
tree languages are closed under Boolean operations. Potentially, they also play
a practical role in systems that manipulate sets of terms, but their complexity
has so far discouraged their widespread application.
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In the paper we develop an optimised algorithm for determinisation, and anal-
yse its properties. Experiments show that it performs well, though the worst case
remains intractable. We also discuss applications of finite tree automata that ex-
ploit the determinisation algorithm. In Section 2 the essentials, for our purposes,
of finite tree automata are introduced. The operations of determinisation and
completion are defined. Section 3 presents the optimised algorithm for determin-
ising an FTA. It is developed in a series of stages starting from the textbook
algorithm for determinisation. In Section 4 a compact representation called prod-
uct form of the set of transitions of an FTA is described, and it is shown how
the algorithm in Section 3 can output transitions in product form. The perfor-
mance of the algorithm is analysed in Section 5. In Section 6 we discuss the
combination of determinisation and completion of an FTA and show that the
performance of the algorithm generating product form is as effective when gener-
ating a complete determinised automaton. Section 7 reports on the performance
of the algorithm on a large number of example tree automata. Section 8 discusses
potential applications of the algorithm, Section 9 contains a discussion of related
work and finally in Section 10 we summarise the outlook for further work and
applications.

2 Preliminaries

A finite tree automaton (FTA) is defined as a quadruple 〈Q,Qf , Σ,∆〉, where

1. Q is a finite set called states,
2. Qf ⊆ Q is called the set of accepting (or final) states,
3. Σ is a set of function symbols and
4. ∆ is a set of transitions.

Each function symbol f ∈ Σ has an arity n ≥ 0, written ar(f) = n. Function
symbols with arity 0 are called constants. Q and Σ are disjoint. Term(Σ) is the
set of ground terms (also called trees) constructed from Σ where t ∈ Term(Σ) iff
t ∈ Σ is a constant or t = f(t1, . . . , tn) where ar(f) = n and t1, . . . , tn ∈ Term(Σ).
Similarly Term(Σ ∪ Q) is the set of terms/trees constructed from Σ and Q,
treating the elements of Q as constants.

Each transition in ∆ is of the form f(q1, . . . , qn) → q, where ar(f) = n and
q, q1, . . . , qn ∈ Q.

To define acceptance of a term by the FTA 〈Q,Qf , Σ,∆〉 we first define a
context for the FTA. A context is a term from Term(Σ ∪ Q ∪ {•}) containing
exactly one occurrence of • (which is a constant not in Σ orQ). Let c be a context
and t ∈ Term(Σ ∪Q); c[t] denotes the term resulting from the replacement of •
in c by t.

The binary relation⇒ represents one step of a run for the FTA. It is defined
as follows; c[l] ⇒ c[r] iff c is a context and l → r ∈ ∆. The reflexive, transitive
closure of ⇒ is denoted ⇒∗.

A run for t ∈ Term(Σ) exists if t⇒∗ q where q ∈ Q. The run is successful if
q ∈ Qf and in this case t is accepted by the FTA. A tree automaton R defines a
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set of terms, that is, a tree language, denoted L(R), as the set of all terms that
it accepts. We also write L(q) to be the set of terms t such that t ⇒∗ q in a
given FTA.

Definition 1. An FTA 〈Q,Qf , Σ,∆〉 is called bottom-up deterministic if and
only if ∆ contains no two transitions with the same left hand side. A bottom-up
deterministic FTA is abbreviated as a DFTA.

Runs of a DFTA are deterministic in the following sense; for every context c and
term of form c[t] there is at most one term c[t′] such that c[t]⇒ c[t′]. It follows
that for every t ∈ Term(Σ) there is at most one q ∈ Q such that t⇒∗ q. As far
as expressiveness is concerned we can limit our attention to DFTAs. For every
FTA R there exists a DFTA R′ such that L(R) = L(R′)3.

Definition 2. An automaton R = 〈Q,Qf , Σ,∆〉 is complete if for all n-ary
functions f ∈ Σ and states q1, . . . , qn ∈ Q, there exists a state q such that
f(q1, . . . , qn)→ q ∈ ∆.

It follows that in a complete FTA every term t has at least one run and further-
more since in a complete DFTA each t has a run to exactly one state, a complete
DFTA defines a partition of Term(Σ), namely {L(q) | q ∈ Q} \ ∅.

L(any)

L(listlist)

L(list)
L(q1) = L(any) ∩ L(list) ∩ L(listlist)

L(q2) = (L(any) ∩  L(list)) \ L(listlist)

L(q3) = L(any) \ (L(list) ∪ L(listlist))

Fig. 1. The disjoint languages from Example 1

Definition 3. Let Σ be any signature and any a state. We define ∆Σ
any to be the

following set of transitions.

{f(

n times︷ ︸︸ ︷
any, . . . , any)→ any |fn ∈ Σ}

3 FTAs are sometimes denoted NFTAs in the literature where N stands for nondeter-
ministic.
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
∆d ← ∅
repeat
Qd ← Qd ∪ {Q0},
∆d ← ∆d ∪ {f(Q1, . . . , Qn)→ Q0}
where

fn ∈ Σ, Q1, . . . , Qn ∈ Qd,
Q0 = {q0 | ∃q1 ∈ Q1, . . . , qn ∈ Qn, (f(q1, . . . , qn)→ q0) ∈ ∆}

until no rules can be added to ∆d

Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 2. Textbook Determinisation Algorithm

Clearly, given an FTA 〈Q,Qf , Σ,∆〉 with any ∈ Q and ∆Σ
any ⊆ ∆, there is a run

t⇒∗ any for any t ∈ Term(Σ), that is, L(any) = Term(Σ).

We normally drop the superscript in ∆Σ
any as Σ is usually clear from the context.

Example 1. Let Σ = {[], [.|.], 0}, Q = {list, listlist, any}, Qf = {list, listlist}
and∆ = {[]→ list, [any|list]→ list, []→ listlist, [list|listlist]→ listlist}∪∆any.
L(list) is the set of lists of any terms, while L(listlist) is the set of lists whose
elements are themselves lists. Clearly L(listlist) is contained in L(list), which
is contained in L(any).

The automaton is not bottom-up deterministic; a determinisation algorithm
(see Section 3) yields the DFTA 〈Q′, Q′f , Σ,∆′〉, where Q′ = {q1, q2, q3}, Q′f =
{q1, q2} and ∆′ = {[] → q1, [q1|q1] → q1, [q2|q1] → q1, [q1|q2] → q2, [q2|q2] →
q2, [q3|q2]→ q2, [q3|q1]→ q2, [q2|q3]→ q3, [q1|q3]→ q3, [q3|q3]→ q3, 0→ q3}.
The states q1, q2 and q3 are abbreviations for elements of the powerset of the
states of the original FTA; here q1 = {any, list, listlist}, q2 = {any, list} and
q3 = {any}. This automaton is also complete. ut
In Example 1, L(q1) = L(any)∩L(list)∩L(listlist), L(q2) = (L(list)∩L(any))\
L(listlist), and L(q3) = L(any)\(L(list)∪L(listlist)). The relationship between
the languages corresponding to the FTA and DFTA states in Example 1 is shown
in Figure 1.

3 Development of an Optimised Determinisation
Algorithm

In this section we present the textbook algorithm for FTA determinisation, and
then proceed to optimise it. The determinisation algorithm in Figure 2 is the one
presented (apart from some renaming of variables) in [2]. In each of the figures
from Figure 2 to Figure 11 we show successive modifications of the algorithm,
where the changed lines are marked on the right hand side.
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
∆d ← ∅
repeat
Qoldd ← Qd .
∆old
d ← ∆d .

for all f ∈ Σ do .
for all (Q1, . . . Qn) ∈ (Qoldd × · · · × Qoldd ) do .

Q0 = {q0 | ∃q1 ∈ Q1, . . . , qn ∈ Qn, (f(q1, . . . , qn)→ q0) ∈ ∆}
if Q0 6= ∅ then .
Qd ← Qd ∪ {Q0}
∆d ← ∆d ∪ {f(Q1, . . . , Qn)→ Q0}

end if .
end for .

end for .
until ∆d = ∆old

d .
Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 3. Restructured algorithm with explicit iteration (Step 1)

We note first a small ambiguity in the algorithm as presented in [2]. In the
assignment Q0 = {q0 | ∃q1 ∈ Q1, . . . , qn ∈ Qn, (f(q1, . . . , qn) → q0) ∈ ∆} the
right hand side is implicitly assumed to evaluate to a non-empty set, otherwise it
is ignored. Although allowing the variable Q0 to take the value ∅ would return a
correct result, many redundant transitions of the form f(Q1, . . . , Qn)→ ∅ would
be generated. In our transformed algorithm we make this assumption explicit
and eliminate such transitions.

Note that the states of the computed DFTA are elements of 2Q where Q is
the set of states of the input FTA.

3.1 Step 1: Minor restructuring

First we apply some minor restructuring to the algorithm. The repeat . . .where
. . . until loop is rewritten to iterate explicitly over Σ and Qd, and the termina-
tion condition “no rules can be added to ∆d” is rewritten to compare values of
∆d on successive iterations. Using this restructuring we obtain the algorithm in
Figure 3.

3.2 Step 2: Introduction of functional notation

Let 〈Q,Σ,Qf , ∆〉 be an FTA. Let t = f(q1, . . . , qn) → q, n ≥ 0 be a transition
in ∆. Define the following selector functions on t.

rhs : ∆→ Q lhsi : ∆ ↪→ Q func : ∆→ Q
rhs(t) = q lhsi(t) = qi, 1 ≤ i ≤ n func(t) = f
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The lhsi functions are partial functions on ∆ since lhsi is not defined for ev-
ery transition for a given i. In particular the lhsi functions are undefined on
transitions whose function symbol has arity zero.

The inverse mappings lhs−1i : Q → 2∆ and func−1 : Σ → 2∆ are defined
respectively as lhs−1i (q) = {t | lhsi(t) = q}, func−1(f) = {t | func(t) = f}. Using
these, lhsfi : (Σ ×Q)→ 2∆ is defined as lhsfi(f, q) = lhs−1i (q) ∩ func−1(f).

lhsfi(f, q) can be regarded as an index for ∆ returning the set of transitions
whose function symbol is f and whose left hand side has q in the ith position.
The mappings lhsfi are lifted to sets of states, giving Lhsfi defined as follows.

Lhsfi : (Σ × 2Q)→ 2∆

Lhsfi(f, S) =
⋃
s∈S lhsfi(f, s)

We also lift rhs to sets of transitions, giving the function Rhs : 2∆ → 2Q, where
Rhs(T ) = {rhs(t) | t ∈ T}.

We now apply the notation introduced above, and use the following property,
obtaining the result shown in Figure 4.

Property 1. The following expressions are equal for all f ∈ Σ and Q1, . . . Qn ∈
2Q.

– {q0 | ∃q1 ∈ Q1, . . . , qn ∈ Qn, (f(q1, . . . , qn)→ q0) ∈ ∆}
– if ar(f) = 0 then Rhs(func−1(f)) else Rhs(Lhsf1(f,Q1) ∩ · · · ∩ Lhsfn(f,Qn))

Proof. Application of the definitions of Rhs, Lhsfi and set operations. ut

3.3 Step 3: Modifying the termination condition, and delaying
computation of transitions

Examining the loop beginning “for all f ∈ Σ ”, we observe that the values of
∆old
d and Qoldd are assigned to ∆d and Qd respectively just before the loop, and

the values of ∆old
d and Qoldd do not change in the body of the for all loop. By

a simple dependency analysis we can establish that the values of ∆d and Qd at
the end of the loop body depend only on the value of Qoldd at the start of the
loop body. Furthermore the values of ∆d and Qd are only incremented in the
loop body. Thus we can assert the following invariants immediately before the
until statement:

∆d = ∆old
d ∪ φ1(Qoldd ) (1)

Qd = Qoldd ∪ φ2(Qoldd ) (2)

where φ1 : 22
Q → 2∆ and φ2 : 22

Q → 22
Q

represent the loop body, projected
onto ∆d and Qd respectively.

Rename the values of Qd and ∆d on the ith iteration (i = 1, 2, . . .) of the
repeat loop, just before the until statement, as Qid and∆i

d respectively. Assume
that Q0

d = ∆0
d = ∅. Qoldd on the ith iteration is the same as the final value of
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
∆d ← ∅
repeat
Qoldd ← Qd
∆old
d ← ∆d

for all f ∈ Σ do
for all (Q1, . . . Qn) ∈ (Qoldd × · · · × Qoldd ) do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f)) .

else
Q0 ← Rhs(Lhsf1(f,Q1) ∩ · · · ∩ Lhsfn(f,Qn)) .

end if
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}
∆d ← ∆d ∪ {f(Q1, . . . , Qn)→ Q0}

end if
end for

end for
until ∆d = ∆old

d

Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 4. Algorithm after applying Property 1 (Step 2)

Qd on the previous iteration, that is, Qi−1d ; similarly ∆i−1
d = ∆old

d . With this
notation, (1) and (2) are rewritten as

∆i
d = ∆i−1

d ∪ φ1(Qi−1d ) (3)

Qid = Qi−1d ∪ φ2(Qi−1d ) (4)

We next show that the following invariants hold.

Property 2 (Loop Invariant). The following assertions hold just before the until
statement in Figure 4.

∆i
d = φ1(Qi−1d )

Qid = φ2(Qi−1d ).

Proof. φ1 and φ2 are monotonic functions and Qid ⊆ Qi+1
d , i = 0, 1, . . . since the

value of Qd is only incremented in the algorithm. The proof is by induction on
i; for ∆i

d, the base case i = 1 holds using (3) and the fact that ∆0
d = ∅. In the

inductive step, assume that ∆i
d = φ1(Qi−1d ) and show that ∆i+1

d = φ1(Qid). We
have
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∆i+1
d = ∆i

d ∪ φ1(Qid),by (3)

= φ1(Qi−1d ) ∪ φ1(Qid), by ind. hyp.

= φ1(Qid), since Qi−1d ⊆ Qid and φ1 is monotonic

ut
The proof of the invariant for Qid is similar.

Corollary 1. For all i > 0, Qi−1d = Qid ⇒ (∆i
d = ∆i+1

d ∧Qid = Qi+1
d ).

The corollary states that if the value of Qd stabilises on the ith iteration, that is,
Qi−1d = Qid then the value of∆d stabilises at the latest on the i+1th iteration. We
exploit this fact to modify the termination condition to Qd = Qoldd , and possibly
reduce the number of iterations by 1. In this case the set of transitions might
be incomplete when the repeat loop terminates, but since ∆i

d = φ1(Qi−1d ), that
is, ∆d depends only on the final value of Qd, we can remove the computation of
∆d from the repeat loop entirely, delaying it until after the termination of the
loop. We return to this point in Section 3.7.

3.4 Step 4: Separate handling of 0-arity functions

The processing of 0-arity functions depends only on the original FTA, and so
can be precomputed before entering the repeat loop. The next stage of the
transformed algorithm after applying Steps 3 and 4 is displayed in Figure 5.

The transformations so far are fairly superficial and have little bearing on the
efficiency of the algorithm. However they enable us to focus on the iterations of
the inner for all loop, with a view to more substantial efficiency improvements.

3.5 Step 5: Inner Loop Optimisation

The fact that we no longer need to compute transitions in the inner loop can lead
to major savings since we can focus on the computation of Qd. Let us suppose
that |Qoldd | = k. Then for a function symbol f of arity n, there are kn tuples
(Q1, . . . Qn) in the cartesian product (Qoldd × · · · × Qoldd ) and so the function
Lhsfi(f,Qj) is called n ∗ kn times. On the other hand, within the loop there
are only k ∗ n different calls of the form Lhsfi(f,Qj) and therefore it is worth
precomputing these k ∗ n values outside the loop and avoid recomputing the
same call many times. Furthermore, cases of Lhsfi(f,Qj) that evaluate to the
empty set can be ignored since they cannot contribute to a non-empty value of
Q0 within the loop, since Rhs(∅) = ∅.

We precompute the Lhsfi(f,Qj) values by introducing a function called Ti :

(Σ × 22
Q

)→ 22
∆

defined as

Ti(f,Q′) = {Lhsfi(f,Q′) | Q′ ∈ Q′} \ ∅.
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
for all f ∈ Σ do .

if (ar(f) = 0) then .
Q0 ← Rhs(func−1(f)) .
if Q0 6= ∅ then .
Qd ← Qd ∪ {Q0} .

end if .
end if .

end for .
repeat
Qoldd ← Qd
for all f ∈ Σ do

if (ar(f) > 0) then
for all (Q1, . . . Qn) ∈ (Qoldd × · · · × Qoldd ) do

Q0 ← Rhs(Lhsf1(f,Q1) ∩ · · · ∩ Lhsfn(f,Qn))
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end for

end if
end for

until Qd = Qoldd .
Compute the set of transitions ∆d (see Section 3.7) .
Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 5. Algorithm after Steps 3 and 4

This function is defined for 1 ≤ i ≤ n for a function of arity n. The inner for all
loop is then rewritten to iterate over tuples of sets of transitions chosen from the
product T1(f,Qoldd )× · · · × Tn(f,Qoldd ) instead of (Qoldd × · · · × Qoldd ). It is clear
that exactly the same non-empty values of Q0 are generated within the loop; we
are just choosing precomputed values of Lhsfi(f,Qj) from the Ti(f,Qoldd ) sets,
which also omits the empty values. Applying this transformation, we get the
result shown in Figure 6.

The transformation of the inner loop is significant in typical applications.
Instead of kn iterations of the loop, where k = |Qoldd |, there are

∏n
i=i |Ti(f,Qoldd )|

iterations which is usually much smaller. Note that in many FTAs the size of
the set Ti(f,Qoldd ) is usually much smaller than k (and is often zero) since the
states of the input automaton tend to appear in only a few argument positions
of function symbols.
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end if

end for
repeat
Qoldd ← Qd
for all f ∈ Σ do

if (ar(f) > 0) then
(Ψ1, . . . , Ψn)← (T1(f,Qoldd ), . . . , Tn(f,Qoldd )) .
for all (∆1, . . .∆n) ∈ (Ψ1 × · · · × Ψn) do .

Q0 ← Rhs(∆1 ∩ · · · ∩∆n) .
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end for

end if
end for

until Qd = Qoldd
Compute the set of transitions ∆d (see Section 3.7)
Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 6. Algorithm after Step 5

3.6 Step 6: Tracking new values on each iteration

We now apply an optimisation that further reduces the computation in the
innermost loop. As it stands in Figure 6, any value of Q0 generated on some
iteration is also generated on all subsequent iterations of the repeat loop, since
elements are added to Qd but never removed. To avoid this, we note that when
evaluating the statementQ0 ← Rhs(∆1∩· · ·∩∆n) in some iteration of the repeat
loop, a new value is obtained for Q0 only when at least one of ∆1, . . . ,∆n is a
new value, that is, one that was not available on the previous iteration. We
therefore try to avoid re-evaluating old values of ∆i for each i.

Some bookkeeping is needed to keep track of new values. A variable Qnewd

represents the new elements of Qd produced on some iteration. (The termination
condition of the repeat loop is altered to Qnewd = ∅). We introduce variables
Ψfi , which has the value of Ti(f,Qd). The variables are initialised to ∅ and
their values are augmented on each iteration. The statement (Φ1, . . . , Φn) ←
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(T1(f,Qnewd ) \ Ψf1 , . . . , Tn(f,Qnewd ) \ Ψfn ) computes the new sets of transitions
from which the ∆i sets can be chosen.

The innermost for all statement now iterates over the union of sets of tuples
Z where Z =

⋃n
i=1(Ψf1 × · · ·×Ψfi−1×Φi×Ψf,newi+1 × · · ·×Ψf,newn ), which consists

of exactly those tuples which contain at least one new value (that is, from one of
the Φi). Note in particular that if no new values for any argument are produced
for some f on some iteration, then the iteration set for f on the next iteration
is empty, since all the variables (Φ1, . . . , Φn) have the value ∅.

procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end if
Ψf1 , . . . , Ψ

f
n = ∅, . . . , ∅ .

end for
Qnewd ← Qd .
repeat
Qoldd ← Qd
for all f ∈ Σ do

if (ar(f) > 0) then
(Φ1, . . . , Φn)← (T1(f,Qnewd ) \ Ψf1 , . . . , Tn(f,Qnewd ) \ Ψfn ) .
(Ψf,new1 , . . . , Ψf,newn )← (Ψf1 ∪ Φ1, . . . , Ψ

f
n ∪ Φn) .

Z ← ⋃n
i=1(Ψ

f
1 × · · · × Ψfi−1 × Φi × Ψf,newi+1 × · · · × Ψf,newn ) .

for all (∆1, . . .∆n) ∈ Z do .
Q0 ← Rhs(∆1 ∩ · · · ∩∆n)
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end for

end if
(Ψf1 , . . . , Ψ

f
n )← (Ψf,new1 , . . . , Ψf,newn ) .

end for
Qnewd ← Qd \ Qoldd

until Qnewd = ∅ .
Compute the set of transitions ∆d (see Section 3.7)
Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d)

end procedure

Fig. 7. Algorithm after Step 6
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3.7 Computing the transitions of the DFTA

As noted in Section 3.3, the set of transitions ∆d of the determinised automaton
can be computed from the final set of states Qd and the functions Rhs, Lhsf
and func−1 defined on the original FTA transitions ∆. Again, we start from
a naive computation and proceed to transform it. The code in Figure 8 arises
straightforwardly by extracting the computation of the transitions from within
the repeat loop of the original algorithm (see Figure 4).

∆d ← ∅
for all f ∈ Σ do

for all (Q1, . . . Qn) ∈ (Qd × · · · × Qd) do
if (ar(f) = 0) then

Q0 ← Rhs(func−1(f))
else

Q0 ← Rhs(Lhsf1(f,Q1) ∩ · · · ∩ Lhsfn(f,Qn))
end if
if Q0 6= ∅ then

∆d ← ∆d ∪ {f(Q1, . . . , Qn)→ Q0}
end if

end for
end for

Fig. 8. Computation of transitions I

We can now repeat the optimisation discussed in Section 3.5 above, in order to
precompute the values of Lhsfi(f,Qi) using the function Ti(f,Q) = {Lhsfi(Q, f) |
Q ∈ Q} \ ∅, thus reducing n ∗ kn calls to Lhsfi for an n-ary function f to k ∗ n
calls, where k = |Q|.

We now turn to the question of how to return the final set of transitions ∆d.
If we want an explicit set of transitions, then we need to generate the tuples
(Q1, . . . , Qn) which are used to build the left hand side of a transition inside the
loop. Given an n-ary function f and a tuple of sets of transitions (∆1, . . . ∆n),
we want to generate all tuples (Q1, . . . , Qn) such that Lhsfi(f,Qi) = ∆i, for
1 ≤ i ≤ n. To do this we use an “inverse” function T −1i : (Σ × 22

Q × 2∆)→ 22
Q

,
defined as follows.

T −1i (f,Q, ∆′) = {Q′ | Lhsfi(f,Q′) = ∆′, Q′ ∈ Q}
This leads to the code in Figure 9 for generating transitions.

However, enumerating the final set ∆d, which is often far larger than the
original set of transitions of the FTA, could nullify the optimisations already
presented. In particular, when the DFTA is complete the size of the transition
set explodes. For a function symbol f of arity n, and set of DFTA states of size
k, there are kn transitions for f in the complete DFTA. In practice this means
that explicitly generating the transitions is prohibitively expensive except for
automata with low-arity function symbols.
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∆d ← ∅
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then

∆d ← ∆d ∪ {f → Q0} .
end if

else
n = ar(f)
Ψf1 , . . . , Ψ

f
n = T1(f,Qd), . . . , Tn(f,Qd) .

for all (∆1, . . .∆n) ∈ (Ψf1 × · · · × Ψfn ) do .
Q0 ← Rhs(∆1 ∩ · · · ∩∆n) .
if Q0 6= ∅ then
Q1, . . . ,Qn = T −1

1 (f,Qd,∆1), . . . , T −1
n (f,Qd,∆n) .

for all (Q1, . . . Qn) ∈ (Q1 × · · · × Qn) do .
∆d ← ∆d ∪ {f(Q1, . . . , Qn)→ Q0}

end for .
end if

end for
end if

end for

Fig. 9. Optimised computation of transitions II

4 Product representation sets of transitions

A product transition is of the form f(Q1, . . . , Qn)→ q where Q1, . . . , Qn are sets
of states and q is a state. This product transition denotes the set of transitions
{f(q1, . . . , qn)→ q | q1 ∈ Q1, . . . , qn ∈ Qn}. Thus

∏n
i=1 |Qi| transitions are rep-

resented by a single product transition. Alternatively, we can regard a product
transition as introducing ε-transitions. An ε-transition has the form q1 → q2
where q1, q2 are states. ε-transitions can be eliminated, if desired. Given a prod-
uct transition f(Q1, . . . , Qn) → q, introduce n new non-final states s1, . . . , sn
corresponding to Q1, . . . , Qn respectively and replace the product transition by
the set of transitions {f(s1, . . . , sn) → q} ∪ {q′ → si | q′ ∈ Qi, i = 1..n}. It can
be shown that this transformation preserves the language of the FTA.

Example 2. The transitions of the DFTA generated in Example 1 can be repre-
sented in product transition form as follows.

∆′ = {[]→ q1 0→ q1
[{q1, q2}|{q1}]→ q1 [{q3}|{q1}]→ q2
[{q1, q2}|{q3}]→ q3 [{q3}|{q3}]→ q3
[{q1, q2}|{q2}]→ q2 [{q3}|{q2}]→ q2}

13



∆d ← ∅
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then

∆d ← ∆d ∪ {f → Q0}
end if

else
n = ar(f)
Ψf1 , . . . , Ψ

f
n = T1(f,Qd), . . . , Tn(f,Qd)

for all (∆1, . . .∆n) ∈ (Ψf1 × · · · × Ψfn ) do
Q0 ← Rhs(∆1 ∩ · · · ∩∆n)
if Q0 6= ∅ then
Q1, . . . ,Qn = T −1

1 (f,Qd,∆1), . . . , T −1
n (f,Qd,∆n)

∆d ← ∆d ∪ {f(Q1, . . . ,Qn)→ Q0} .
end if

end for
end if

end for

Fig. 10. Computation of product transitions

These 8 product transitions represent the 11 transitions shown in Example 1.
There are more compact equivalent sets of product transitions, for example.

∆′′ = {[]→ q1 0→ q1
[{q1, q2, q3}|{q3}]→ q3 [{q1, q2, q3}|{q2}]→ q2
[{q1, q2}|{q1}]→ q1 [{q3}|{q1}]→ q2}

ut

4.1 Determinisation algorithm giving transitions in product form

Product form can be obtained directly from optimised algorithm. We take the
code in Figure 9 and simply omit the enumeration of the tuples Q1, . . . , Qn in the
inner loop. This gives the algorithm in Figure 10 for generating ∆d in product
form. In the expression f(Q1, . . . ,Qn) → Q0 in Figure 10, Q1, . . . ,Qn are sets
of DFTA states. Rather than enumerating their cartesian product we simply
return the product transition.

For the input FTA in Example 1 the output∆′ in Example 2 is then obtained.
Later, in Section 6.3 we will see that this can be improved, yielding the output
∆′′ in Example 2.

This can be a huge saving as will be seen from the experimental results, but
obviously it would not be worth anything if it just delays the problem, that is,
if we have to enumerate the cartesian product anyway later when we use the
DFTA in some application. We will show that product form can often be used
directly and in such cases the product never needs to be expanded.
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procedure FTA Determinisation (Input: 〈Q,Σ,Qf ,∆〉)
Qd ← ∅ . Compute DFTA states
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end if

end for
Ψf1 , . . . , Ψ

f
n = ∅, . . . , ∅

Qnewd ← Qd
repeat
Qoldd ← Qd
for all f ∈ Σ do

if (ar(f) > 0) then
(Φ1, . . . , Φn)← (T1(f,Qnewd ) \ Ψf1 , . . . , Tn(f,Qnewd ) \ Ψfn )
(Ψf,new1 , . . . , Ψf,newn )← (Ψf1 ∪ Φ1, . . . , Ψ

f
n ∪ Φn)

Z ← ⋃n
i=1(Ψ

f
1 × · · · × Ψfi−1 × Φi × Ψf,newi+1 × · · · × Ψf,newn )

for all (∆1, . . .∆n) ∈ Z do
Q0 ← Rhs(∆1 ∩ · · · ∩∆n)
if Q0 6= ∅ then
Qd ← Qd ∪ {Q0}

end if
end for

end if
(Ψf1 , . . . , Ψ

f
n )← (Ψf,new1 , . . . , Ψf,newn )

end for
Qnewd ← Qd \ Qoldd

until Qnewd = ∅ .
∆d ← ∅ . Compute DFTA transitions
for all f ∈ Σ do

if (ar(f) = 0) then
Q0 ← Rhs(func−1(f))
if Q0 6= ∅ then

∆d ← ∆d ∪ {f → Q0}
end if

else
n = ar(f)
for all (∆1, . . .∆n) ∈ (Ψf1 × · · · × Ψfn ) do

Q0 ← Rhs(∆1 ∩ · · · ∩∆n)
if Q0 6= ∅ then
Q1, . . . ,Qn = T −1

1 (f,Qd,∆1), . . . , T −1
n (f,Qd,∆n)

∆d ← ∆d ∪ {f(Q1, . . . ,Qn)→ Q0}
end if

end for
end if

end for
Qf ← {Q′ ∈ Qd | Q′ ∩Qf 6= ∅}
return (Qd, Σ,Qf ,∆d) . Return DFTA

end procedure

Fig. 11. Optimised FTA determinisation algorithm returning product form15



4.2 Further optimisation

We note that in the above code for computing ∆d, the values of Ψf1 , . . . , Ψ
f
n

are available from the main repeat loop and do not need to be recomputed.
Also, the values of the expressions T −1i (f,Qd, ∆i) can be computed in the main
loop of the algorithm by tabulating computed values of Lhsfi; more precisely,
whenever an expression Lhsfi(f,Q

′) is evaluated and yields a non-empty value
∆′, Q′ is added to the set of values T −1i (f,Qd, ∆′). The complete determinisation
algorithm returning transitions in product form is shown in Figure 11 (without
the tabulation of the computation of T −1i just mentioned).

5 Performance of the optimised algorithm

Worst Case. Consider first the worst case running time for determinising the
FTA 〈Q,Q′, Σ,∆〉. The size of the input is measured by |Σ|, |Q| and n, the
maximum arity of the elements of Σ.

The main repeat loop of the algorithm in Figure 11 can be traversed up to
2|Q| times, which is the upper bound of the number of states in the DFTA. For
each f ∈ Σ within the main loop there are up to (2|Q|)n iterations, since the
size of Ti(f,Qoldd ) can be up to |Qd| = 2|Q|. Combining all three nested loops,
the complexity of the main loop of the algorithm is O(|Σ|.2|Q|.(n+1)).

Considering the product transitions, the maximum number of iterations of
the transition-generation loop for each n-ary f ∈ Σ is (2|Q|)n and there is at
most one product transition generated in each iteration. Hence the number of
product transitions generated in the worst case is O(|Σ|.2n.|Q|).

Regarding both the running time and the size of the output, the optimised
algorithm performs no better in the worst case than the textbook algorithm with
explicit enumeration of the DFTA transitions.

Running time in practice. The worst case of 2|Q| for the number of DFTA
states seems to be approached only in unusual situations; to achieve it, for every
pairs of states q, q′ of the original automaton it would have to be the case that
L(q) ∩ L(q′), L(q) \ L(q′) and L(q′) \ L(q) are all nonempty (since the states of
the generated DFTA include only ones accepting some term, see Lemma 1). For
such a pair of states, it is more common either that L(q) and L(q′) are disjoint
or that one includes the other. If this is the case for all such pairs, then the
number of DFTA states is at most the number of original states. In Example
1 the number of DFTA states is the same as the number of original states; our
experiments (Section 7) show a tendency for the size of the set of states of the
FTA and the corresponding DFTA to be close for examples where the FTA is
a description of program data. The set of DFTA states may even be smaller, if
the original FTA has redundant or duplicated states - which sometimes happens
with automatically generated FTAs.

Replacing 2|Q| by |Qd| in the complexity expressions gives a running time of
O(|Σ|.|Qd|n+1) and O(|Σ|.|Qd|n) for the number of product transitions in the
output. Even if |Qd| is small, we can see that high-arity function symbols still
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present a potential for blow-up. Again, in practice this danger is often greatly re-
duced by the structure of the input FTA. As already noted, the size of Ti(f,Qd),
whose worst-case size is |Qd| is usually much smaller than Qd. This is due to the
natural “typing” of function symbols. A function argument position in the orig-
inal FTA is typically associated with a small number of states. However, there
are applications where the size of Ti(f,Qd) is larger and for these is a danger of
blow-up for high-arity function symbols. Such applications will be discussed in
Section 7.

6 Complete DFTAs

Recall that in a complete FTA (Definition 2) every term t ∈ Term(Σ) has a run
t ⇒∗ q where q ∈ Q. An FTA can always be completed [2], by adding an extra
state to Q and adding extra transitions to ∆.

Example 3. Consider the following FTA 〈Q,Σ,Qf , ∆〉 whereΣ = {[], [.|.], 0, s(.)},
Q = {list, num}, Qf = {list} and ∆ = {[] → list, [num|list] → list, 0 →
num, s(num)→ num}. The FTA is not complete; for instance there is no tran-
sition with left hand side s(list) or [num|num]. Thus the terms s([]) and [s(0)|0],
for example, have no run. To complete it, we can add an extra non-final state,
say e (for error), and add the following transitions. ∆e = {s(list) → e, s(e) →
e, [list|list]→ e, [num|num]→ e, [list|num]→ e, [e|list]→ e, [list|e]→ e, [e|e]→
e, [num|e] → e, [e|num] → e}. The FTA 〈Q ∪ {e}, Σ,Qf , ∆ ∪ ∆e〉 is complete
and accepts the same language as the original FTA (the set of lists of numbers).
Any term that did not have a run in the original now has a run to e (which is
not an accepting state).

One can see that the number of transitions in the completed FTA is determined
by the arity of the function symbols and the number of states, and that it is
exponential in the arity of the function symbols.

6.1 Simultaneous completion and determinisation using ∆any

Recall that given a finite signature Σ we define the set of transitions ∆any as

{f(

n times︷ ︸︸ ︷
any, . . . , any) → any |fn ∈ Σ}. Clearly for any term t ∈ Term(Σ) there

exists a run t ⇒∗ any. The following lemma shows that we can use ∆any to
obtain a complete DFTA from a given FTA, in other words, we can perform
determinisation and completion simultaneously. First we establish an important
property of the DFTAs generated by the algorithm - that they contain only
“non-empty” states.

Lemma 1. Given an FTA, for every state Q′ of the DFTA obtained by deter-
minising it using the given algorithm, L(Q′) 6= ∅.
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Proof. We consider the algorithm in Figure 4 for simplicity, rather than the final
optimised algorithm. If the algorithm terminates in one iteration then the set of
states of the DFTA is empty and the lemma holds trivially. Otherwise, consider
a DFTA state Q′ that is generated in the algorithm. We reason by induction on
the number of iterations of the main loop of the algorithm

– Base case (i = 1): If Q′ is generated on the first iteration, then there exists
some 0-arity function f such that Q′ = Rhs(func−1(f)). The transition f →
Q′ is generated on iteration 1 hence there is a run f ⇒ Q′.

– Induction (i > 1): Assume that the lemma holds for all states generated up to
the i−1th iteration, and that Q′ is a new state generated on the ith iteration.
Then there exist states Q1, . . . , Qn which were generated in the first i − 1
iterations, such that a transition f(Q1, . . . , Qn)→ Q′ is constructed on the
ith iteration. By the inductive hypothesis, there exist terms t1, . . . , tn such
that ti ⇒∗ Qi, 1 ≤ i ≤ n. Hence there is a run f(t1, . . . , tn)⇒∗ Q′.

Hence the lemma holds for states generated on any iteration. ut

Lemma 2. Let 〈Q,Qf , Σ,∆〉 be an FTA such that every term t ∈ Term(Σ)
has a run t ⇒∗ q for some q ∈ Q. Then the DFTA obtained by determinising
〈Q,Qf , Σ,∆〉 is complete.

Proof. Let Q′ be the set of states of the generated DFTA, and assume that it is
not complete. Then there exist Q1, . . . , Qn ∈ Q′ and an n-ary function f such
that for all Q0 there is no transition f(Q1, . . . , Qn) → Q0 in the DFTA. Let
t1, . . . , tn ∈ Term(Σ) be terms such that ti ⇒∗ Qi, 1 ≤ i ≤ n. The existence of
such terms is guaranteed by Lemma 1. Since it is a DFTA, there cannot be any
other runs ti ⇒∗ Q′i where Qi 6= Q′i respectively. Hence there is no run for the
term f(t1, . . . , tn), which contradicts the assumption of the lemma. Hence the
generated DFTA is complete. ut

Thus we establish the following.

Lemma 3. Let 〈Q,Qf , Σ,∆〉 be an FTA, such that any ∈ Q and ∆any ⊆ ∆.
Then the DFTA obtained by the determinisation algorithm with this input is
complete.

Proof. For every term t ∈ Term(Σ) the FTA has a run t ⇒∗ any. The result
follows from Lemma 2. ut

6.2 Performance of the algorithm after adding ∆any

Although by Lemma 3 we can obtain a complete DFTA from any given input
FTA, simply by adding the state any and the transitions ∆any to the input before
running the algorithm, we may ask what is the impact on the performance of
the determinisation algorithm.

The impact on the number of states of the DFTA is slight; at most one extra
state {any} is generated, in the case that there are some terms accepted by any
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but not by any other state. This state represents the “error” state of the classical
completion procedure. Apart from this, the same states are generated but any is
added to each one; it is easy to see that any must appear in every DFTA state
since the state any appears in every possible left-hand-side position in ∆any.

The main question is thus the impact on the generated product representa-
tion of the transitions. Let us analyse the effect of adding ∆any on part of the
algorithm generating the transitions of the DFTA in product form (Figure 11).
Consider the effect of the introduction of ∆any on the basic operations of the
algorithm.

– func−1(f) and Lhsfi(f,Q): in each case the returned set contains at most one
extra transition (that is, the transition f(any, . . . , any) → any, in the case
that any ∈ Q).

– Rhs(T ): the returned set contains at most one extra state any in the case
that T ∩∆any 6= ∅.

Given this, the effect on the generation of transitions is a constant indepen-
dent of the input FTA. In Section 7 we verify that the overhead of adding ∆any

is minimal. Thus we obtain the completed DFTA at almost no extra cost over
obtaining the DFTA.

6.3 Don’t-Care Arguments in Complete DFTAs

An underscore argument “_” is used as shorthand for Qd in a product transi-
tion, for example f(Q1, . . . ,_, . . . ,Qn) → Q0. This indicates that the choice of
DFTA state in this argument is irrelevant in determining the right hand side Q0.
Product transitions of the form f(. . . ,_,Qi,_, . . .) → Q0 in which all but one
argument are don’t-care arguments are especially interesting, since the right-
hand-side of the transition is determined by just one argument. We call the
elements of such arguments deciding arguments.

A typical case of deciding arguments arises in complete DFTAs constructed
by adding ∆any to the original FTA, where a state {any} is generated, which
accepts the terms not accepted by any other state. {any} is a deciding argument;
the presence of {any} in any argument in a DFTA transition is sufficient to
ensure that the right hand side of the transition is {any}. That is, there are
DFTA product transitions of the form:

f({{any}},_, . . . ,_,_)→ {any}
f(_, {{any}},_, . . . ,_)→ {any}

. . .
f(_,_, . . . ,_, {{any}})→ {any}

These product transitions overlap, obviously, since {any} is included in the don’t-
care arguments. However, this form might be much more compact than the
product transitions generated by the determinisation algorithm. Furthermore,
there could be other deciding arguments besides {any}.
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We prove two lemmas defining sufficient conditions for finding deciding ar-
guments and generating the corresponding don’t-care product transitions.

Lemma 4. Let Qd be the set of states of a compete DFTA and let Ψ1, . . . , Ψn =
T1(f,Qd), . . . , Tn(f,Qd) for some n-ary function f . Let ∆′ ∈ Ψi and Qi =
T −1i (f,Qd, ∆′). Then Qi are deciding arguments for the ith argument of f if

Rhs(∆′ ∩
⋂

(∩Ψ1, . . . ,∩Ψi−1,∩Ψi+1, . . . ,∩Ψn)) = Rhs(∆′).

Proof. Consider the set of right hand sides of transitions that can be built from
(Ψ1 × · · · × Ψn) using ∆′ in the ith position, say Q̄. That is, Q̄ = Rhs(∆1 ∩ · · · ∩
∆′ ∩ · · · ∩∆n) where (∆1, . . . ,∆

′, . . . ,∆n) ∈ (Ψ1 × · · · × {∆′} × · · ·Ψn) with ∆′
in the ith position.

Rhs(∆′) is an upper bound for Q̄, since ∆1 ∩ . . . , ∆′ ∩ . . .∩∆n ⊆ ∆′ and Rhs
is monotonic. The expression Rhs(∆′ ∩⋂

(∩Ψ1, . . . ,∩Ψi−1,∩Ψi+1, . . . ,∩Ψn)) is a
lower bound for Q̄, since ∆′ ∩⋂

(∩Ψ1, . . . ,∩Ψi−1,∩Ψi+1, . . . ,∩Ψn) ⊆ ∆1 ∩ · · · ∩
∆′ ∩ · · · ∩∆n and Rhs is monotonic. If these two are equal, as in the statement
of the property, then we can conclude that the value Rhs(∆′) is the right hand
side for any such transition since it is both an upper and a lower bound.

ut

If we can find such a∆′ ∈ Ti(f,Qd), a (product) transition f(. . . ,_,Qi,_, . . .)→
Rhs(∆′) is constructed, where Qi = T −1i (f,Qd, ∆′) and the underscore argu-
ments stand for Qd.

A more specialised sufficient condition for deciding arguments for binary
functions is given by the following lemma.

Lemma 5. Let Qd be the set of states of a complete DFTA and let Ψ1, Ψ2 =
T1(f,Qd), T2(f,Qd) for some 2-ary function f . Then a set of DFTA states Qi ⊆
Qd, where Qi = T −1i (f,Qd, ∆′) for some ∆′ ∈ Ψi, i ∈ {1, 2} are deciding
arguments for the ith argument of f if Rhs(∆′) is a singleton, and for all ∆′′ ∈
Ψj, j ∈ {1, 2} \ {i},

∆′ ∩∆′′ 6= ∅.

Proof. ∆′ ∩∆′′ 6= ∅ implies that Rhs(∆j ∩∆′) 6= ∅. Since Rhs(∆′) is a singleton
and Rhs(∆′′ ∩∆′) ⊆ Rhs(∆′), Rhs(∆′′ ∩∆′) = Rhs(∆′).

If such a ∆′ is found, say in argument 2, we generate the product transition
f(_,Q2)→ Rhs(∆′) where Q2 = T −12 (f,Qd, ∆′) and the underscore arguments
stand for Qd.

We can easily add a check for deciding arguments using the conditions of
Lemma 4 and 5 to the algorithm, just before generating product transitions.
The calculation of the intersections is exponential in the arity of the function
symbols, but does not alter the complexity of the overall algorithm and can save
effort in generating product transitions. For each set of deciding arguments Qi
discovered, we generate a don’t-care product transition of the form just shown,
and the corresponding value ∆′ is removed from Ψi when computing the remain-
ing product transitions for f .
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Textbook Optimised algorithm Optimised algorithm
algorithm w/o don’t cares with don’t cares
det det det det det det

+compl +compl +compl
solved 112 109 14663 14663 14663 14663
timeout 14584 14587 33 33 33 33
avg. secs. 0.55 3.35 0.07 0.20 0.07 0.14
% solved 0.76 0.74 99.77 99.77 99.77 99.77

Table 1. Comparison of textbook vs. product form algorithm for FTA determinisation
and completion on 14,696 benchmark problems (timeout 60 seconds)

The problem of finding the minimum number of product transitions to rep-
resent the DFTA transitions seems to be intractable and is beyond the scope of
this paper. In essence it can be stated as the problem of finding the minimum
number of cartesian products whose union is a given relation.

7 Experiments

Tables 1 and 2 show experimental results comparing the determinisation algo-
rithm in Figure 11 with the textbook algorithm. It also compares the effect of
adding the detection of don’t care arguments in the determinisation algorithm.
The algorithms are implemented in Java; the textbook algorithm is a direct
implementation of the program in Figure 4.

The 14,696 benchmark FTAs were obtained from the repository that is part
of the tool libvata4, which is a highly optimised non-deterministic finite tree
automata library. Many of these FTAs originate in the Timbuk system [7]. The
experiments were carried out with an Intel 2.9 GHz processor with 8 GB memory
on a MacBook Pro running OS X 10.9.4.

7.1 Determinisation and completion

The columns in Table 1 show the overall effectiveness of three versions of the
determinisation algorithm, for determinisation (det) and determinisation with
completion (def+compl). The first version is the textbook algorithm, the sec-
ond is the optimised algorithm returning product form, without detection of
don’t care arguments, and the third is with detection of don’t cares.

The first notable point is that the textbook algorithm is able to solve less
than 1% of the problems while the optimised algorithms solve nearly all of them.
The running time of the textbook algorithm is far slower even considering only
those problems that it could solve.

Completion is a significant overhead for the textbook algorithm mainly be-
cause usually it results in a much larger set of transitions, and fewer problems
4 http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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Optimised algorithm Optimised algorithm
w/o don’t cares with don’t cares

det det+compl det det+compl
average |Q| 58.3 59.3 58.3 59.3
average |∆| 286.3 301.8 286.3 301.8
average |Σ| 15.5 15.5 15.5 15.5
average |Qd| 66.9 67.9 66.9 67.9
average |∆d| 17614 2.9× 1018 - 2.9× 1018

average |∆Π | 649 13211 663 3249

Table 2. Size statistics for output of optimised DFTA algorithm

were solvable within the timeout period. For the optimised algorithm, completion
increases the running time by an average of approximately two to three times
but does not affect the number of solvable problems. Detection of don’t cares
is not a substantial overhead, and in fact can lead to overall time savings when
completion is performed since the number of product transitions can thereby be
reduced.

The size of the input and output DFTAs is summarised in Table 2. The size
of the set of states and transitions of the input FTA are |Q| and |∆|. The number
of DFTA states is |Qd| and the number of product transitions in the DFTA is
|∆Π |. For completed DFTAs, the precise size of the set of transitions depends
only on the signature and can be calculated; this is shown in the table as |∆d|.
For non-complete DFTAs we can estimate the actual size of |∆d| by summing
the product of the sizes of the product states in each transition. However, the
same transition could be represented by more than one product transition so it
is an over-estimate. In the case of product transitions with don’t cares the over-
estimation is so great that we omit it in Table 2. It can immediately be seen that
the number of DFTA states is on average only slightly greater than the number
of input FTA states, as discussed in Section 5. The average size of the set of
transitions in completed DFTAs is extremely large, and shows immediately why
the textbook algorithm fails. Regarding completion, the size of the set of states
of both input and output automata is increased by exactly one. The size of the
input set of transitions is increased by the size of ∆any which is |Σ|.

The effect of computing don’t cares is noticeable in the size of ∆Π for com-
plete DFTAs. The number of product transitions with don’t cares is only about
25% of the number without don’t cares and is reflected in the somewhat faster
runtimes for don’t cares with completion in Table 1.

8 Applications

The question of applicability depends partly on whether the product form of
transitions is directly usable. As already pointed out, the product form is of
little ultimate use if the transitions need to be explicitly enumerated in order to
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use them. Fortunately, it appears that the product form can often be efficiently
processed, and in some cases the transitions are not even needed – the set of
states of the DFTA is all that is needed.

Determinisation and completion are needed to form the complement of an
FTA. Applications in verification and analysis using tree automata to represent
set of states could benefit from the availability of a practical complementation
algorithm, e.g. [3,13,7,4,1]. Note that we obtain the complement with its tran-
sitions in product form, simply by switching the accepting and non-accepting
states of the completed DFTA.

Gallagher et al. [5,6] showed that program properties of interest in analysis
of logic program can be formulated as sets of terms defined by an FTA on
the program signature and that a precise abstract domain for static analysis
could then be constructed by determinising the FTA. The algorithm presented
in detail here was first developed in the context of that work. The approach was
made practical by encoding the product transitions directly as binary decision
diagrams (BDDs) thus avoiding the need to enumerate transitions explicitly.

DFTA states encode useful information in themselves. The emptiness of in-
tersections of input FTA states can be checked using the DFTA states. There
exists a term accepted by every member of a set of states Q1 in the FTA if
and only if the corresponding DFTA includes a state Q2 such that Q1 ⊆ Q2.
Given the fact that the DFTA transitions are not needed for this check, the
algorithm presented here could provide a useful basis for checking emptiness of
intersections.

Another question that can be answered by examining the set of states is
universality. An FTA A with signature Σ is universal if L(A) = Term(Σ). We
add a non-final state any to the states of A and add ∆any to the transitions of
A and determinise the result. Then A is universal if and only if every final state
in the resulting DFTA contains any.

Recently, the determinisation algorithm has been used to implement a refine-
ment procedure for Horn clause verification [10]. An FTA is built to represent
the set of derivations in a given set of Horn clauses. Infeasible traces can be
eliminated from the FTA by application of the determinisation algorithm to
construct the difference of two FTAs, which is then used to construct a new set
of Horn clauses.

9 Related Work

The algorithm presented in this paper was sketched by Gallagher et al. in [6],
including the concept of product transitions. Otherwise, we do not know of other
attempts to design practical algorithms for determinisation. Previous work that
used tree automata as a modelling formalism commented on the impracticality
of handling complementation, due to the complexity of the determinisation and
completion algorithm [13,8]. Available libraries for tree automata manipulation
seem to implement the textbook algorithm [7,11,12].
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A different but related problem is tree automata containment checking. The
classical approach to checking containment of FTA A1 in FTA A2 is to check
the emptiness of A1 ∩ Ā2 which involves the complementation of A2. Other con-
tainment algorithms not requiring complementation have been presented [14,9].
It would appear that the optimised algorithm for determinisation gives renewed
potential to the classical approach, especially since the transitions do not need
to be generated to check containment. A1 is contained in A2 if and only if the
states of the DFTA for A1 ∪A2 do not include any state containing a final state
of A1 but no final state of A2. Currently we are comparing this approach with
state-of-the-art containment checking algorithms.

10 Future Work

There remains interesting work to do both on the algorithm itself and its appli-
cations. Firstly, there seem to be opportunities for optimisation of the critical
inner loop of the algorithm generating the DFTA states. A state can be gener-
ated many times, and it seems likely that there are conditions on the elements of
the Φ and Ψ arrays in the algorithm that could be checked in order to avoid this.
The challenge is to simplify the checks sufficiently to make them worthwhile as
an optimisation. Perhaps a completely different representation of the Φ and Ψ
arrays, such as some Boolean encoding, is needed. We are actively investigating
this.

Secondly, we are looking at applications of the algorithm. The original moti-
vating application, that of logic program analysis, is still interesting, since Horn
clauses (pure logic programs) are increasingly used as a representation language
for a variety of other languages and computational formalisms. Essentially the
same analysis problems arise in term rewriting systems, where a system state is
represented by a term, and an FTA expresses state properties of interest.

Finally, as mentioned in Section 9, we are performing an evaluation of the
use of determinisation algorithm for the FTA containment problem. This has
applications in XML language containment checking, among others.
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