
Enabling Schoolteachers to Participate in the Design of 
Educational Software 

Marian G. Williams 
Center for Productivity Enhancement 
University of Massachusetts Lowell 

One University Avenue 
Lowell, MA 01854 USA 

Tel: 1-508-934-2630 
E-Mail: williams.chi@xerox.com 

ABSTRACT 
The introduction of new hardware and software can change 
the way that teachers do their jobs, yet teachers are often 
neither enabled nor permitted to participate in the design of 
the new technology. This paper looks at the barriers that 
keep teachers from such participation and suggests one 
approach to overcoming them. The approach is to provide 
a translator who is familiar with the work and workplaces 
of both teachers and software developers and who can bridge 
the inter-occupational communication gap. A case study in 
the participatory design of educational software using a 
translator is presented. StUdying translation for clues to 
what a translator does and how he or she does it may yield 
information that is useful to design team members who do 
not have the benefit of working with a translator. Such 
information would be useful for design efforts beyond the 
realm of educational software. 

KEYWORDS: participatory design, translation, software 
design, educational software, case study. 

INTRODUCTION 
Schoolteachers need to be enabled to participate in the 
design or customization of software tools that they will use 
on the job. As with any group of workers, the introduction 
of a new software tool into the teachers' workplace may 
impact not only the way work is done, but working 
conditions as well. Many public school teachers face 
barriers to participation in design sessions, even though 
their participation is crucial to the design process. 

This paper looks at public school teachers as workers and at 
the public school as their workplace. This is an uncommon 
point of view. Schools are most often studied as the 
students' learning-place, not as the teachers' workplace. 
Similarly, educational software is most often regarded as a 
learning tool for students, not as a teaching tool for 

In PDC'94: Proceedings of the Participatory Design 
Conference. R. Trigg, S.I. Anderson, and E.A. Dykstra­
Erickson (Eds.) . Chapel Hill NC USA, 27-28 October 
1994. Computer Professionals for Social Responsibility, 
P.O. Box 717, Palo Alto CA 94302-0717 USA, 
cpsr@cpsr.org. 

©Copyright University of Massachusetts Lowell 1994. 
All rights reserved. 

153 

teachers. As a result, software is often introduced into a 
school without benefit of teacher involvement and without 
regard for its effect on how the teachers do their work. 

There are, of course, educational software successes. For 
instance, there are teachers who are computer literate and 
who, by evangelizing, help some of their colleagues also to 
become computer literate. Similarly, there are organizations 
developing educational software who engage teachers 
actively in design teams. These success stories are far too 
rare. For graphic descriptions of the unsuccessful 
introduction of computers into public schools in the US, 
see [Branscum, 1992; Piller 1992]. 

In many parts of the USA, including Massachusetts, public 
school faculties have shrunk because of budget cuts and 
changing enrollments. The youngest teachers, the ones 
most apt to have had computer training, have lost their jobs 
through reduction in the size of the teaching workforce. 
The remaining teachers, in many cases, have little or no 
familiarity with computers. For example, in the case study 
described in the next section, only two of the 10 teachers 
we worked with had substantial experience using a 
computer, and their experience was limited to word­
processing. 

Teachers are domain experts, both in curriculum 
development and in their subject areas. We need to learn 
how to give teachers, especially those who are not 
computer-literate, a real voice in the design or 
customization of the software they will use on the job, in 
the classroom. In particular, techniques are needed to secure 
teachers' participation beginning with the earliest stages of 
design, well before the formative evaluation of prototypes. 
This effort complements the work of other researchers who 
are studying participatory design with workers as diverse as 
nurses [Bjerknes and Bratteteig, 1987], architects [Peng, 
1992], and software engineers [Muller, 1991]. 

In their retrospective survey of participatory design projects, 
Clement and van den Besselaar [1993] looked at projects 
that took place in a variety of countries and a variety of 
workplace settings. They observe that the five "prime 
ingredients" in a participatory design project include some 
or all of the following: (1) access to relevant information; 
(2) an independent voice in decision making; (3) user-



controlled development resources, including time, facilities, 
and expertise; (4) organizational and technical flexibility; 
and (5) appropriate development methods. 

Of these ingredients, the first and third are common to all of 
the projects that Clement and van den Besselaar surveyed. 
Looking at why these ingredients are difficult to achieve in 
the teachers' workplace is helpful in illustrating the barriers 
to participation faced by schoolteachers. 

Teachers do not have control over their time. A teacher's 
workday is tightly scheduled; the schedule is not flexible. 
A one-hour "prep period" is a luxury, and is not nearly 
sufficient for preparing a day's lessons and grading a day's 
assignments. Many teachers spend long hours outside of 
school on preparation and grading. Getting released from 
regularly scheduled work (for example, to participate in a 
training session) requires the expense of paying substitute 
teachers and the work of preparing lessons for them to 
teach. As a result, teachers are not apt to be freed up to 
work on a project such as software design. 

Most teachers do not have access to on-the-job computer 
training. The teachers who have participated in our projects 
tell us that teachers are asked to solve more and more 
problems, ranging from the educational to the societal, 
without being given any additional resources to bring to 
bear. It is perhaps not surprising, then, that many teachers 
are expected to learn to use computers on their own time 
and of their own initiative. 

In addition, teachers have no formal voice in how computer 
technology is introduced into schools. Although teachers 
in the US are unionized, their unions have been slow to 
develop policies about giving teachers individual and 
collective voices in how such technologies are incorporated 
into curriculum. 

Appropriate development methods, in Clement and van den 
Besselaar's words, must come to the teachers' rescue. 
Techniques must be employed that enable teachers to 
participate in software design and custornization despite the 
barriers to their learning about computers. Such techniques 
must allow them to communicate with software developers 
even though they are unfamiliar with the software domain 
and even though the software developers are unfamiliar with 
theirs. 

A key issue here is to provide translation between users and 
software developers [Williams and Begg, 1992, 1993a, 
1993b]. The translation involves not only the different 
terminology used by teachers and software developers, but 
also the understanding of each other's work and workplace. 
We have successfully used a former-teacher-turned­
computer-scientist as the translator in our projects. The 
translator understands not only the languages used by 
teachers and by software developers, but also the detailed 
nature of their work and the conventions of their 
workplaces. The translator can employ participatory design 
techniques to make sure that there is a meeting of the minds 
between teachers and software developers. 

154 

The next section develops the notion of translation further. 
It is followed by a case study of the participatory design of 
educational software, and then by a description of the future 
directions of this research project. 

TRANSLATION 
Design team participants from different domains use 
different languages, have different ways of viewing their 
work, and have different workplace conventions. These 
differences can make interdisciplinary communication 
challenging. Translation deals with building bridges to 
resolve the differences .. 

The focus of this research is on people who can serve 
effectively as translators between users and software 
developers, because they have work experience in both 
domains. (The degenerate case of translation is in the 
design of software for one's own use, where one is 
simultaneously the user and the developer.) 

Harrison et al. [1994] speak of the importance for members 
of interdisciplinary design teams to learn each other's 
terminology early in the design process. Speaking from 
experience, they say, "We often called a rose by many 
names only to later discover we all meant a rose. We also 
often thought we were all talking about a rose when we 
meant a petunia, a lily and a dandelion" (p. 129). Members 
of the design team need a set of common terminology to 
avoid talking at cross purposes. 

A translator can facilitate the convergence on a common 
vocabulary, since he or she is familiar with the terminology 
of both the users' and engineers' domains and understands 
the differences between apparent synonyms. Such 
understanding comes from detailed knowledge of the work 
of both domains. Thus the translator in the case study 
which follows can compare and contrast various names for a 
piece of writing (essay, file, story) without needing to 
apply the methods of, say, ethnography [Blomberg et al., 
1993] or contextual inquiry [Holtzblat and Jones, 1993] for 
work language analysis. The effort expended by design 
teams that have to resolve their own language differences is 
illustrated in [Katzenberg and Piela, 1993]. 

More complex than terminology is the view of work and 
workplace, or what Harrison et al. [1994] call the 
"definition of the situation." This definition may include 
the goals of the design project as viewed by various design 
team members, the nature of the tasks to be performed with 
the software under design, the conventions of the users' 
workplace, as well as workplace politics. Design team 
members view each of these complex issues in different 
ways. Non-users on the team can make erroneous 
assumptions about the users' work and workplace, based on 
the conventions of their own fields. A translator can 
identify and correct such assumptions. 

The description of translation should not be taken to imply 
that any career-changer who has become a software 
professional can serve effectively as a translator. One of the 
interesting issues in studying translation is to consider the 
characteristics, other than domain knowledge, that make a 



person a successful translator between users and developers. 
The idea of establishing a registry of software professionals 
with expertise in domains outside of software is a 
provocative one, though. 

The case study which follows describes a participatory 
design project with schoolteachers. The project relied on 
translation between the domain of writing instructors and 
the domain of software engineers. It illustrates the issues 
of translation between terminologies and workplace 
conventions. 

CASE STUDY 
This case study concerns the introduction of new computer 
technology into the curriculum of a public-school English 
department, which previously had no computer technology 
available in the classroom. 

The computer technology in question is an editorial system, 
which consists of the networked hardware and software used 
by reporters and editors on the staff of a newspaper or 
magazine. A premise of the project is that teachers and 
students can profitably interact in ways analogous to the 
interaction of editors and writers in a newsroom. 

An editorial system is designed especially for creating, 
sharing, and editing newspaper or magazine articles. It is 
not a general-purpose computing environment, but rather is 
highly customized for writing and editing. It provides basic 
support for collaboration between writers and editors, 
though not the sophisticated tools of state-of-the-art 
groupware. Because newsroom staff create the content of 
articles but are not responsible for the appearance of the 
final page, an editorial system does not include a page 
layout facility. 

Through of the generosity of a corporate sponsor (Atex 
Publishing Systems of Billerica, MA, USA), an editorial 
system was donated for this project. The grant included not 
only hardware and software, but also installation, the time 
of some engineers to perform customizations, two days of 
training, and hot-line help. 

The editorial system was installed in the English 
department of a four-year public high school in a middle­
class suburb of Boston. The school had 10 English 
teachers (eight full-time and two part-time) and an 
enrollment of 900 students in grades nine through twelve. 
The editorial system is currently in its second year of use at 
the high school. Each sophomore and junior English class 
uses the editorial system lab, instead of a traditional 
classroom, for one out of four terms. Thus, the lab is used 
by a total of 450 students per year. All of the English 
department's teachers chose to be trained to use the editorial 
system. 

The editorial system's hardware consists of 22 terminals, 
which are a mixture of Atex terminals and IBM PCs. All 
of the terminals, whether Atex or IBM, have Atex 
proprietary keyboards, which are highly customized for 
writers and which have a large number of dedicated or 
programmable keys for word-processing functions . The 

155 

terminals hang off a customized Digital Equipment 
Corporation minicomputer. Print-outs are done on a laser 
printer. 

The software is Atex' s basic editorial system, used 
worldwide by newspaper writers and editors. The software 
offers traditional word-processing capabilities, nearly all of 
which are available via special keys on the keyboard. It 
also offers elementary features for cooperative work by 
writers and editors. These features include red-lining (which 
permits an editor's corrections, additions, deletions, and 
comments to be distinguishable from the writer's original 
text), electronic mail, and file sharing. 

Whenever an editorial system is introduced into a new 
workplace, it is customized to reflect local work practices. 
The Atex engineers had plenty of experience tailoring 
editorial systems for the individual newsrooms of particular 
publishing operations. However, customizing an editorial 
system for a classroom was outside their experience. 

Despite the obvious similarities between a newsroom and a 
writing classroom, an editor's work differs from a teacher's 
work. The editor's goal is to ensure that high-quality 
articles are produced for publication. The teacher's goal is 
to ensure that high-quality writing instruction is delivered 
to students, who will then, it is hoped, produce high-quality 
pieces of writing. Yet the editorial system, appropriately 
customized for each workplace, proves a useful tool for 
both jobs. 

The teachers are domain experts in the teaching of writing. 
They had no expertise in software development. Their lack 
of computer knowledge made it impossible for them to 
direct the customization of the editorial system or even to 
carry on useful dialogues with the software engineers. They 
had neither the skills to evaluate the existing capabilities of 
the editorial system nor the skills to tell the software 
engineers what customizations they needed. They were 
unfamiliar. with basic computer-ese, such as "file," 
"directory," "username," and "electronic mail." They also 
did not have the skills to look at differences in workflow in 
a paper-based vs. a computer-based classroom. That is, 
they lacked the formal skills to analyze and articulate their 
work practices in a way that would be useful to the 
engineers. 

Moreover, the teachers did not control the resources that 
would have enabled them to develop computer skills and 
knowledge in preparation for discussions with the 
engineers. They were given no release time to learn about 
computers or to work on the customizations. They had no 
ready access to computers in the school. And they had no 
in-house expertise in software development to draw on. In 
addition, the teachers felt inferior to the software developers. 
The tended to refer to their lack of knowledge as stupidity 
and spoke about their fear of being unable to understand and 
use computers. 

The engineers, on the other hand, were knowledgeable about 
the editorial system and about workflow in a newsroom. 
They were used to newspaper jargon. In fact, a lot of that 



jargon had been incorporated into the editorial system. 
Where a teacher would "throwaway a paper" and a computer 
person would "delete a file," a newspaper person would 
"spike a story," a metaphor for the traditional metal spike 
on which papers to be discarded could be impaled. In the 
editorial system, a file is deleted by sending it to the "spike 
queue." The engineers' language was a mixture of 
computer talk and newspaper talk, while the teachers spoke 
the language of writing instruction. 

Having spent time in the classroom as students, the 
engineers had general assumptions about what teachers do, 
but were not aware of specific activities and conventions of 
the workplace. They needed to be encouraged away from an 
I-know-what-the-teachers-need point of view. They had 
spent plenty of time in classrooms watching teachers, and 
so had a sense that they knew the nature of the teachers' 
work, when in fact they did not. (A trivial example of their 
unfamiliarity with teachers' workplace realities was their 
suggestion to use "stud" as an abbreviation for "student" in 
naming some computer accounts.) Their job was to 
perform customizations, but they had neither sufficient time 
nor sufficient knowledge of the teachers' workplace to lead 
the design of those customizations. 

The design effort was lead by the author, a university 
researcher who is a former English teacher turned computer 
scientist. The author served as a translator to enable the 
high school teachers to participate in the customization 
process by translating between their language and workplace 
conventions and those of the software engineers. 

The translation process had these steps: work with the 
teachers to develop a description of writing-related activities 
currently used in their paper-based classrooms, including 
workflow and paperflow; determine how these activities 
could be carried out and extended, based on the existing and 
potential capabilities of the editorial system; figure out the 
implications of the computer-based versions of these 
activities on information flow, security, and usability; teach 
the teachers, in their own language and in terms of 
classroom activities, about features that would extend their 
writing-instruction activities, in order to enable them to 
decide if they wanted the extensions; translate the 
descriptions of the activities from the language and 
workplace conventions of the teachers to the language and 
conventions of the engineers; and work with the engineers 
to specify the customizations to the editorial system. 

The customizations to the editorial system address issues 
such as how to support the teaching of process writing, in 
which students are introduced to the process of evolving a 
piece of writing through multiple drafts; how to discourage 
plagiarism; and how to help students have easy access to 
the materials they need to have at hand. 

Consider, for instance, this example concerning the 
versioning of files. In a typical newsroom, there is only 
one current version of a "story," the most recent draft. 
Either the editor has it or the writer has it. When one of 
them sends the story to the other, the story disappears 
entirely from the sender's workspace and now appears only 

156 

in the recipient's workspace. Earlier versions of the story 
are stored in an archive and are retrieved only if disaster 
strikes the current version. What matters in the newsroom 
is the product, not the process by which it is created. 

By contrast, in an English classroom where process writing 
is taught, students are expected to maintain a library of the 
various drafts of an essay. When a student submits a draft 
to the teacher, the student should retain all earlier versions, 
as well as a copy of the current version, in his or her 
workspace. Both the product and the process by which it is 
created are important. The versioning capabilities of the 
editorial system were customized to reflect these differences 
between the newsroom and the classroom. When a student 
submits a paper to the teacher electronically, a new version 
number is automatically assigned, and all drafts are archived 
in the student's own workspace. Several additional 
examples of customizations to the editorial system may be 
found in [Williams and Traynor 1994]. 

We hope to interest an educational researcher in evaluating 
the editorial system's effect, if any, on student learning. In 
the meantime, anecdotal evidence from the teachers suggests 
the usual motivational value of successfully integrating 
computers into the curriculum (non-attending students start 
attending class, students who appear passive in the 
traditional classroom are actively engaged by the computers, 
etc.). The teachers also report that students are giving 
greater attention to the writing task and that they take the 
teacher's comments more seriously when they are embedded 
in an electronic essay than when they are written in the 
margins of an essay submitted on paper. 

The project has had workplace side effects for the teachers, 
right from the beginning. What added most to the teacher's 
work load was learning to use the editorial system and 
incorporating it as a tool into the writing curriculum. 
Also, because course times were rescheduled to maximize 
the use of the editorial system lab, teaching assignments 
underwent substantial changes (note that these changes were 
implemented for the beginning of an academic year, and did 
not happen disruptively during the year). Thus, teachers 
found themselves teaching courses that they had never 
taught before, teaching more different courses at the same 
time than previously, or not teaching favorite and familiar 
courses. The project has also brought increased visibility 
to the department. While the teachers appreciate the good 
pUblicity that the project has brought them, they are aware 
of being in the public eye and have had to deal with a 
certain amount of jealousy from their colleagues in other 
departments. The teachers have also had to adjust to the 
fact that their students are, in many cases, far more at ease 
with computers than many of the teachers will ever be. 

FUTURE DIRECTIONS 
Retrospective studies are being performed of two projects 
that introduced new computer technologies into the 
classroom (the project described above and a computer 
science project described in [Williams et aI., 1992]). The 
goal of the retrospective studies is to formulate a set of 
guidelines for the participants in educational software design 
teams to help them break: down barriers to participation. In 



addition to teachers and software developers, such teams 
may include administrators, personnel from sponsor 
corporations, and university researchers. The guidelines are 
intended to serve not only as a source of logistical advice to 
all of these groups, but also as a position paper on the 
importance of empowering teachers to participate in the 
design of software that will change the way they do their 
jobs. 

The guidelines will explicitly address the need for teachers 
to be provided with the resources to participate in design. 
These resources include release time from their other duties 
for design sessions, curriculum revision, and training; ready 
access to new hardware and software outside of training 
sessions; and participatory techniques that enable teachers 
and software professionals to communicate effectively. 

The guidelines will be used in a new project, in which a 
Geographic Information System (GIS) will be introduced as 
a teaching tool in an interdisciplinary curriculum. This 
new project will be the subject of a pro-active study of 
participatory design with school teachers. The design team 
will include a translator, another former teacher turned 
application developer. Data will be collected both by 
observation during the design process and by surveying and 
interviewing participants after the design process. 

SUMMARY 
Schoolteachers are frequently at a disadvantage during the 
design or customization of educational software. As with 
any group of workers, the adoption of a new software tool 
may change the way they do their jobs, and may have 
profound workplace repercussions. Yet, like many other 
groups of workers, teachers face barriers to participation in 
the design process. These barriers may include a lack of 
familiarity with computers, and a lack of resources 
(especially time) to . .gain that familiarity. Additionally, 
teachers may feel at a disadvantage to software 
professionals, and so may perceive themselves to be 
powerless to influence the design process. 

Translation is an approach to enabling users such as these 
teachers to participate in design. A translator with 
experience both in the users' domain and in the software 
development domain can overcome interdisciplinary 
communication difficulties by translating not only between 
the terminology of the two domains, but also between the 
workplace conventions of the domains. A translator can 
also help to restore a real or imagined power imbalance 
between users and software developers. 

The translator in the case study was vital to the 
customization of the editorial system, since the teachers and 
engineers did not have knowledge of the each other's work 
and workplace, and did not have sufficient resources to 
develop such knowledge. The translator was accepted by 
both teachers and engineers as somebody who spoke their 
language and who knew how their work responsibilities 
were being affected by the project. Studying the 
contribution made by the translator should reveal additional 
techniques for empowering teachers to participate in 
software design. 

157 

In addition, studying the nature of the translation activity 
may lead to techniques that other, non-translator, facilitators 
can use to mediate the design activities of interdisciplinary 
groups. Such techniques would be valuable beyond the 
domain of educational software 

ACKNOWLEDGMENTS 
This research is funded in part by u.S. Department of 
Education grant number R117E30237, "Improving the 
Success Rate of Adapting Technology for the Classroom." 

The project that forms the basis of the case study could not 
have taken place without the generosity and commitment of 
Atex Publishing Systems and the vision of vice president 
Jo Hoppe, nor could it have happened without the courage 
and dedication of the teachers who embraced the editorial 
system as a new teaching tool. 

REFERENCES 
Bjerknes, G., and T. Bratteteig. (1987). Florence in 

Wonderland: System Development with Nurses. In G. 
Bjerknes, P. Ehn, and M. Kyng (Eds.), Computers and 
Democracy: A Scandinavian Challenge, Aldershot, 
England: Avebury, pp. 279-295. 

Blomberg, J., J. Giacomi, A. Mosher, and P. Swenton­
Wall. (1993). Ethnographic Field Methods and Their 
Relation to Design. In Schuler, D. and A. Namioka 
(Eds.), Participatory Design: Principles and Practices, 
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 123-
155. 

Branscum, D. (1992). Conspicuous Consumer: Educators 
Need Support to Make Computing Meaningful. 
MacWorld, September 1992, pp. 83-88. 

Clement, A., and P. van den Besselaar. (1993). A 
Retrospective Look at PD Projects. Communications 
of the ACM, Special Issue on Participatory Design, 
36(6), pp. 29-37. 

Harrison, B., M. Mantei, G. Beirne, and T. Narine. (1994). 
Communicating About Communicating: Cross­
disciplinary Design of a Media Space Interface. In 
Proceedings of CHI '94 Human Factors in Computing 
Systems (April 24-28, Boston, MA), New York: 
ACM, pp. 124-130. 

Holtzblat, K. and S. Jones. (1993). Contextual Inquiry: 
A Participatory Technique for System Design. In 
Schuler, D. and A. Namioka (Eds.), Participatory 
Design: Principles and Practices, Hillsdale, NJ: 
Lawrence Erlbaum Associates, pp. 177-210. 

Katzenberg, B. and P. Piela. (1993). Work Language 
Analysis and the Naming Problem. Communications 
of the ACM, Special Issue on Participatory Design, 
36(6), pp. 86-92. 

Muller, M. (1991). PICTIVE - An Exploration in 
Participatory Design. In Proceedings of CHI '91 
Human Factors in Computing Systems (April 27-May 
2, New Orleans, LA), New York: ACM, pp. 225-231. 

Peng, C. 1992. "Participatory Architectural Modeling: 
Common Images and Distributed Design 
Developments," In PDC'92: Proceedings of the 
Participatory Design Conference, (November 6-7, 



Cambridge, MA), Palo Alto, CA: CPSR, pp. 171-
180. 

Piller, C. (1992). Separate Realities: The Creation of the 
Technological Underclass in America' s Public Schools. 
MacWorld, September 1992, pp. 218-230. 

Williams, M. G., and V. Begg. (1992). Translation in 
Participatory Design. In PDC'92: Proceedings of the 
Participatory Design Conference, (November 6-7, 
Cambridge, MA), Palo Alto, CA: CPSR, pp. 113-14. 

Williams, M. G., and V. Begg. (1993a). Translation 
between Software Developers and Users. 
Communications of the ACM, Special Issue on 
Participatory Design, 36(6), pp. 102-103. 

Williams, M. G., and V. Begg. (1993b). Translation in 
Participatory Design: Lessons from a Workshop. In 

158 

Adjunct Proceedings of INTER CHI '93 (April 24-29, 
Amsterdam), pp. 55-56. 

Williams, M. G., C. Theriault, A. Stowe, and J . 
T.Canning. (1992). Revitalizing High School 
Computer Science. In Proceedings of the National 
Educational Computing Conference (NECC (92), (June 
1992, Dallas, TX), pp. 181-186. 

Williams, M. G. and C. Traynor. (1994). Participatory 
Design of Educational Software. In Proceedings of the 
National Educational Computing Conference (NECC 
(94), (June 11-15, Boston, MA), Eugene, OR: 
International Society for Technology in Education, pp. 
334-339. 


