
Extreme Participation - Moving Extreme Programming
Towards Participatory Design

Markus Rittenhruch, Gregor McEwan, Nigel Ward, Tim Mansfield, Dominik Bartenstein
eRe for Enterprise Distributed Systems Technology

University of Queensland, Monash University and University of Technology Sydney
Level 7, GP South

The University of Queensland, Qld 4072, Australia
+61 (0)7 3365 4310

{markusr, mcewan, nigel, timbomb, dominik}@dstc.edu.au

ABSTRACT
Extreme Programming (XP) is a lightweight software
development methodology that has risen to prominence in
the last few years. XP and Participatory Design are related in
motivation and approach but complimentary in many ways.
The authors believe that integrating some Participatory
Design approaches into XP substantially improves XP and
may even bring some advantages to Participatory Design.
This paper summarises XP, compares the two approaches,
outlines our experience with XP, draws out some problems
with classic XP and suggests some modifications based on
Participatory Design.

Keywords
Extreme Programming, User stories, Participatory Design

INTRODUCTION

Over the last few years a software engineering
methodology, which has been breaking with several
traditional paradigms, has emerged. Extreme Programming
(XP) [2],[24] is based on four main values: simplicity,
communication, feedback and courage and expresses the
necessity to overcome rigid conventions that have
accumulated within the area of software engineering over
the last decades. It aims to make software development more
flexible and focuses on highly flexible environments with
quickly changing requirements.

From a participatory design point of view Extreme
Programming is interesting for two reasons. First, Extreme
Programming implements a highly user-centred approach.
Users playa key role during the design process, specifying
and designing the system in cooperation with system
developers in a strongly iterative, prototype-based process.

In PDe 02 Proceedings of the Participatory Design
Conference, T.Binder, J.Gregory, I.Wagner (Eds.)
Malmo, Sweden, 23-25 June 2002. CPSR, P.O. Box
717, Palo Alto, CA 94302 cpsr@cpsr.org
ISBN 0-9667818-2-1.

29

Second, several principles of Extreme Programming assist
software developers in producing software in a manner that
is suitable for a rapid iterative approach. Some principles for
instance help developers to overcome "release fear" and to
avoid descending into details without consulting the user.

Over the last year, our research project, Information
Ecology, has performed a prototypical software
development process using an Extreme Programming
approach. Our aim was to perform a participatory design
approach while focussing on joint code production and the
management of a distributed developer team at the same
time.

Throughout the process we identified several shortcomings
of XP with regard to user participation. Based on these
problems and general considerations on the similarities and
differences of XP and other participatory design approaches
we extended our XP approach in order to represent user
contributions in a more complete manner.

Within this article we are going to address three main
issues, specifically we will:

I. identify the similarities and differences between Extreme
Programming and participatory design approaches.
Although Extreme Programming is rooted in another
research tradition there are several interesting
resemblances. The comparison is a prerequisite for the
modification of XP towards a more complete user
participation.

2. consider which potential benefits the application of XP
could have in the context of a participatory design
process. The impact of code production on the whole
design process has rarely been addressed within the field
of participatory design. We will point out several aspects
of XP that will help to perform an effective iterative
prototyping approach.

3. describe the modifications to our XP approach showing a
possible way to integrate XP and selected participatory
design methods.

Overview
The XP process gives an overview of the XP methodology,
its history and the challenge it poses to traditional software
engineering.

Participatory Design and XP compares XP with several
participatory design methodologies. It points out
conceptual weaknesses of XP in the context of participatory
design and identifies possible contributions of XP to a
participatory design process deploying iterative
prototyping.

Our System - The Social Portal describes the system we
built and describes the original design process as a way of
introducing our experience of XP and our motivations for
modifying the process.

Problems And Extensions Of The XP Process focuses on
the problems that we encountered during our design and
suggests extensions to the XP process to overcome these
problems and other conceptual weaknesses ofXP.

A New Design Phase describes the new design phase we
performed based on the modifications on the XP process.

The final chapter sums up the paper and describes our
future research.

THE XP PROCESS
This section provides a high level description of the Extreme
Programming (XP) methodology for developing software.
Our description ofXP is based primarily on [2] and [24]

Our intention is not to provide a complete description, but
to provide a context for this paper by discussing some of
the broader points. We begin by describing some of the
philosophy and motivation Dr Extreme Programming. The
next section provides a sketch of the XP development
process. Finally, we contrast XP with more traditional
software engineering approaches.

Goals and scope of XP (development for dynamic
environments)
Extreme Values
One of the key slogans of Extreme Programming is to
"embrace change". The four fundamental values of XP,
simplicity, communication, feedback and courage, are
principles to enable the team to be constantly in touch with
and responsive to a changing envirorurent. The source of
the change is the constant contact with the user as their
concept of the system requirements evolves. XP is designed
so that the software can evolve to match the requirements.

Simplicity in XP has two aspects. First there is simplicity in
the process itself. Having a simple process means that it is

30

less work for the development team to maintain the practices
of XP. Secondly there is simplicity in implementation. In
more traditional software engineering emphasis is placed on
writing code that is easily extensible to future requirements.
Promoting simplicity first means that the resulting software
is easy to understand and reduces the time spent on
extensions that may never be needed.

XP emphasises strong principles of communication within
the development team and also between the team and the
user. Communication within the team is achieved through
frequent planning and design meetings, through sharing
around development tasks, and through short daily
updates. In this way the knowledge of the system and an
awareness of the development process is shared
throughout the team. Communication with the users is
represented by the role of a customer in the team. A
delegate of the user community, which XP calls the
customer has an active part in the requirements and design
of the project. She works in a close relationship with the
development team, and takes a major role in planning
development.

Feedback at all levels is an integral part of XP. Extensive
test suites provide feedback on the software code. Speed of
development and the accuracy of project estimates are
constantly reflected on and revised. The on-site user
representative provides feedback on how well the
requirements are fulfilled.

The fourth fundamental value of XP, courage, is a call to
trust the process. Designing and implementing only the
immediate requirements and not thinking about future
"possibilities" requires courage from the development team.
It also refers to the courage needed to revise existing work
extensively in the face of new requirements.

A major feature of XP is the constant feedback and
evaluation of the software by users. Having user
representatives (customers) actively involved in generating
the requirements of the system as well as being a part of the
development and planning process results in a very
dynamic environment. The customer's concept of the
system is constantly revised as they have constant
feedback from the implementation.

XP methodology consists of only a few rules and practices
that involve little effort to developers. In contrast to many
other methodologies, XP makes very minimal use of design
documentation (for reasons that will become clear). This
lightweight process means that the process can respond
quickly to the evolving requirements.

Extreme History
The roots of Extreme Programming lie in the Smalltalk
community. Kent Beck and Ward Cunningham originated
research on more flexible and agile development

methodologies in the late 80s. They refined their informal
practise on many projects in the early 90s. A coherent XP
process was flrst performed in 1996 when Kent Beck applied
a combination of informal practices to a project at Daimler­
Chrysler. Since then, many aspects of XP have been reflned
and the methodology is continuously evolving.

XP building blocks
This section gives an overview of how XP works. We
approach this by sketching the planning and design
process and then by explaining the roles of various actors in
those processes.

XP is usually explained by describing the practices and
rules that should be followed. These may be applied to a
development process piecemeal to make it "more extreme".
A team must implement most of the practices (there is active
discussion about exactly which practices are in that set)
before it can claim to be "doing XP".

We have avoided describing most of the practises in detail
to keep the description reasonably concise.

Planning and Design

Extreme Programming Project

Test Scenarios

User Stories N~userSt~ry
~menls ProJectVeloclt'y' ~

. System Release { Latest '\ Customer
rchit~CturalMetaphOr. Rclc~sc Plan Iteration Version Acceptance APproval. Small

SpIke P1aJUllng@.. Tests Releases

Un~ertain () Conlident
Estimates Estimates

Spike

Figure 1 An overview ofthe XP planning and design
process (from www.extremeprogramming.org)

At the heart of the XP planning process are User Stories.
User Stories are two to three sentence informal descriptions
of feature requests or desired working situations written by
the customer. These short descriptions form the basis for
planning development.

The development of a project is broken up into a series of
small releases, further divided into iterations. An XP release
cycle takes two to four months. Iterations take about one to
four weeks each.

At the start of each release, the team produces a release
plan. The release plan consists of the most important
remaining User Stories. Selecting the most important User
Stories for the release is the job of the customer. The
developers provide time estimates for the Stories. For each
release, the resources available and the quality of the
product are flxed. The team, including the customer, decide
on a flxed value for either the schedule or the scope of the

31

project. They decide how long they will take or how much to
do, but not both.

This collaborative planning process, with roles for both
customer and developer and rules to follow is called The
Planning Game. Customers and developers "play the
game" to decide on what can be included in both releases
and iterations.

During the planning game, users and designers select and
prioritise user stories by different criteria. Users sort the
stories by value into three piles:

l)vital for the system to function,

2) less essential, but of good value and

3) nice to have.

Designers sort stories by risk into three piles:

1) stories for which precise time estimates that can be
provided,

2) stories that can be estimated reasonably well and

3) stories that can not be estimated at all [2].

The game enables the creation of the release plan that
contains a candidate set of User Stories, which are both
important and achievable in the time available.

At the beginning of each iteration, the customer chooses a
smaller subset of those stories that could be achieved in the
timescale of an iteration. This forms the iteration plan.

The high-level feature descriptions in the User Stories are
broken down into speciflc engineering tasks. This is the
point where most of the system design takes place. The
existing design is modifled to incorporate the extensions
required by the iteration User Stories. Iterations are
deliberately 1ept small so that the customer has frequent
opportunities to evaluate and provide feedback.

After the completion of each iteration, the system is
presented to the customer for evaluation. The customer
checks to see that the User Stories selected for that iteration
have been implemented satisfactorily. Any Stories that do
not pass this testing are fed back into the process for
selection in the next iteration.

At the conclusion of a release, as the name implies, a
version of the system is released to the client organisation
for feedback.

The Team Roles
XP makes flve roles explicit within the team. Each team
member may have more than one role and each role may
have more than one person. The flve roles are programmer,
customer, coach, tester and tracker.

The programmer's primary role is, naturally, to program. To
encourage quality and communication, XP deflnes some

extensions to common programming practices. Firstly, unit
test suites must be written before the code. This helps to
assure quality and also communicates to other programmers
the intention of the code. Secondly, programmers engage in
Pair Programming; working in pairs, with one person
looking over the other's shoulder. In this way the code
undergoes a peer review as it is written. Possibly the most
important benefit of pair programming is that, as pairs are
swapped around, team members acquire knowledge of
different parts of the system.

All phases of the XP process involve the customer. Initially,
the customer writes the User Stories that are used in
planning. Customers select the User Stories, which they
wish to have implemented for the next system release. Next
the customer collaborates in writing acceptance tests, which
defme the correct implementation of each User Story.

After the specified Stories have been implemented,
customers take part in acceptance testing. Acceptance
testing establishes whether the requirements have been
accommodated by the system. In the event of customer
dissatisfaction, the Story is placed back into the pool of
User Stories available for selection in the next release so
that the customer can prioritise its completion.

The customer's role is not limited to the planning and
testing phases. User Stories are not intended as standalone
descriptions of requirements, so the customer is in
continuous communication with the developers during
design and implementation to provide clarification of the
stories.

The customer writes acceptance tests in collaboration with
the tester. The tester is responsible for acceptance testing at
the end of each iteration, running the unit test suites
(usually daily) and communicating the results to the rest of
the team

The coach is responsible for monitoring the team's use of
XP. The coach needs to be aware of the process and be able
to alter the process or the team if something is not working.
Monitoring the process also means making sure that the
fundamental values and the practices are being followed.

The tracker tracks the progress of the development,
communicating the actual speed of development in relation
to the estimated times on the User Stories. This information
is fed back into the estimation process in future planning
sessions. The tracker also produces forecasts of the release
schedule during development.

Comparison with other software engineering methods
XP takes several practices from more traditional software
engineering methodologies, and makes them "more
extreme". More extreme methodologies are less formal and
more tightly integrated into the implementation process.

32

They are also performed only as they are needed and only
as much as is needed for the immediate task.

Listed below are a number of traditional software
engineering practices. We will discuss each of the practices
in comparison to the corresponding practice in XP in order
to give an overview of the XP philosophy in the light of
proven techniques.

Requirements AnalYSiS, Specification and Design
In contrast to the formal documentation and "contractual"
communication between customers, designers and
programmers in traditional software engineering, XP uses a
continuous and informal "conversational" style of
communication. The customer provides the designers with
User Stories, which are deliberately vague. Designers,
customers and programmers are in constant, continuous
communication to resolve the details of what the customer
requires.

The conversation works both ways. The system is designed
and implemented in very small portions and then shown to
the customer. The customer is able to modify and extend the
requirements as their understanding of the system evolves.
To allow quick response to the changing requirements, only
a few User Stories are being implemented at one time and
the design is as minimal as possible to just cover the current
User Stories. The system design is then extended and
refmed as necessary to implement new requirements.

Code review.
In a traditional software engineering process, Code Reviews
are conducted by one or more members of the development
team. The reviewers read through the program code that has
been written and refme it within the context of the project.
The code is reviewed for structure, clarity and
documentation as well as its adherence to project style
guidelines and architecture. In addition to improving the
quality of the code, code reviews als 0 assist with training
new team members into the team's coding style. Where the
whole team performs the code review or the responsibility
for review is moved around the team, it also serves to
communicate knowledge of the project throughout the team.

The XP adaptation of code review is pair programming. The
pair programming practice specifies that two of the
developers work on the same coding task at the same time.
One member of the pair types the code while the other sits
behind them. Working in a pair provides the benefits of
code review as the code is being written. The developer that
is not typing is free to consider the context of the
programming task. While appearing to be wasteful of
programmers, the time is compensated for by the improved
code quality at the time of writing. Pair programming has
been experimentally validated as speeding up development
time [7).

Testing
Traditionally, testing is a phase of development that is
carried out after the main coding effort. Often the testing is
carried out by a specialised tester who is not one of the
programmers. Test cases are designed to cover as much of
the logical functionality of the code as possible. Test cases
are implemented to call the relevant sections of the code and
check the output. Testing checks for logical errors in the
code.

Testing in XP fills the same role as in other software
engineering processes. The change that XP makes to
testing is to require the programmers to write the tests
before the code. Every time new code is written on the XP
project, a corresponding test case must be written and
implemented first. In this way the tests are written in an
iterative fashion in parallel with the code by the person that
is writing the code. The advantages of the XP methodology
are that the practice is less onerous on the programmers, the
tests are developed while the context is still fresh in the
programmers mind, and there is constant feedback on the
state of the code as tests can be run at any stage of
development.

Integration Testing
A large system will usually be broken up into several
sections for implementation. At some point these pieces
have to be integrated to construct the whole system.
Integration testing helps to check that all the pieces fit
together as intended. The tests ensure that the system as a
whole fits the specification. Often integration testing is the
most time consuming stage of development.

XP practice is to continuously integrate. As a programmer
makes a change to the code, it is integrated with the system
daily. Integration and integration testing are incorporated
into the development. This means that the testing is
performed more often and because it's part of the
development ofa new feature, happens in the context of the
addition. The integration is also performed in smaller chunks
of effort.

In summary, XP is a lightweight process. In heavyweight
methodologies, development is split into separate stages;
requirements analysis, specification, design, coding, testing
and integration testing. XP practice rolls all these into one,
continuous stage. Everything is done only when it is
needed.

The comparisons above do not show all of the differences
between XP and more heavyweight software development
processes. However, the major areas of software
development are discussed to give an overview of the
practical differences in Extreme Programming.

PARllCIPATORY DESIGN AND XP
On the first view, comparing XP with participatory design

33

approaches seems like comparing apples with pears. XP is a
software mgineering methodology that is concerned with
classical software-technological issues like code quality,
interaction of developers, release planning, etc.

Participatory design is a research field, which has brought
forth a huge variety of methods and approaches to realise
and facilitate the integration of users into different levels of
(software-) design processes. Most participatory design
approaches are concerned with the process of design itself.
They describe among other things, how design teams are
set up, the different roles users play within the design
process and the methods (e.g. scenarios [5],[1], mock-ups
[9], games [10], ethnographic approaches [8], prototyping
[4]) that are used to establish communication between
different actors within the design process (e.g. users,
designers, facilitators).

The field of software engineering on the whole, has been
overall more reluctant to acknowledge the important role of
the user within the design process. Even though the
emergence of evolutionary and cyclic development
methodologies like Floyd's STEPS model [14] and Boehm's
spiral model [6] emphasized the strong necessity of user­
participation, software engineering as a discipline has
embraced user participation rather hesitantly. In many
software engineering approaches the understanding of user
participation is still often limited to requirement engineering,
leaving users only a marginal role within the actual design
process.

XP as a new software engineering approach has challenged
several traditional paradigms of software design. One of
these major changes is the strong focus on user
participation. If we take a closer look, XP shares a number of
similarities with participatory design approaches in general.
It implements an iterative, prototype-based approach,
integrating users on different levels of the design process.
User representatives (customers) describe their
requirements in a non-formal manner (user stories), decide
about the implementation of components of the system
(release and iteration planning) lIld judge whether certain
aspects of the system have been implemented satisfactorily
(acceptance test) . The whole process is performed in a
strongly iterative manner implementing rapid prototyping
and continuous user involvement.

We see the emergence of XP as a possibility. Though
incomplete with regard to user participation, XP offers
insights about the way software-developers cooperate, that
could help to further integrate the work of designers, users
and software developers. The following chapter takes a
closer look at the relationship between XP and participatory
design approaches and will discuss their mutual influence.
Weare particularly interested in two issues:

1. What are the limitations of XP with regard to user
participation? Can XP be enhanced to reflect a broader
understanding of user participation based on
participatory design approaches?

2. How does the process of software coding as it is
performed within XP influence the design process as a
whole? Which aspects of XP can be beneficial within a
participatory design process?

In the following we will relate XP to some participatory
design methodologies on a conceptual and methodological
level, we will discuss shortcomings of XP in comparison to
participatory design methodologies and discuss the
question of what XP can offer within a participatory design
process.

Conceptual and methodological similarities
We will consider four aspects of XP in the context of
participatory design, user involvement, user stories, release
and iteration planning and finally the XP prototyping
approach.

In order to compare XP with participatory design
approaches several notational differences need to be
considered. XP originally represents users only in a
representative manner within the customer role. We will
henceforth use the term "user" if we talk about all potential
users of a system in general and the term "customer" if we
refer to particular aspects of the XP customer role. While
participatory design approaches normally refer to the people
driving the process as designers, XP talk about developers
or programmers, due to the software engineering roots of
this approach. Although representing different
responsibilities the roles of the designer and the developer
within the XP methodology intersect. In order to facilitate
the comparison we will use the term "designer" from now
on, unless we are referring to pure programming in which
case we will use the term "developer".

User involvement
Within a participatory design process there are several
levels of user participation and user selection. Depending
on the size of the organisation, and the limitations of time
and resources, the number of users participating actively or
passively within the project can vary greatly. During
workshops users representing different departments, or
different organisational roles might be chosen. In workplace
studies and ethnographic approaches the observer will
choose work situations that are suitable to represent a wide
range of the working context.

XP is rather unspecific about the selection process for the
customer role. In general the customer is a user that is
supposed to work in the area for which the software is
developed. XP is not specific about the number of
customers that are appropriate for a particular design

34

process. One customer seems to be common in many
projects, but any number of customers is possible. A certain
shortcoming of XP is that it doesn't rule out the possibility
that organisations nominate a person who might have a
general view, but not a detailed view on particular working
contexts, as the sole customer. In general, an appropriate
user selection is necessary for both participatory design
and XP approaches.

User stories
User stories are one of the main building blocks of the XP
methodology. To revise their role, users (customers)
describe in their own words "what they want the system to
do" [24], with unstructured stories of about 3 sentences.
User stories are often written down and I:presented on
cards. They are used within the XP process in a threefold
manner. First, the totality of user stories represents the
informal, continually evolving user requirements for the
system. Second, user stories are important elements used
during the planning game. Developers estimate the amount
of programming time for each release based on the user
stories. And third, user stories are used within acceptance
tests where users specify conditions to decide whether a
user story has been implemented to their satisfaction.

User stories have similarities with several methods found in
participatory design. Erickson uses "stories" as a means of
communication between designers and users [12],[1l].
Stories can be designer stories that reflect the designers
experience from prior projects or people's stories that hold
information about what people do and think about their
work. In comparison to user stories as used in XP, people's
stories in Erickson's sense are gathered and interpreted by
designers.

Scenarios I are commonly used in participatory design [5].
They are similar to user stories in that they describe both
situations of system use and system functionality in a non­
formal manner. The main difference between scenarios and
user stories is, that scenarios often describe a whole
working situation covering several work practices and the
use of a system within a work context. User stories in
comparison are more fragmented and focus on singular use
situations.

The process of creating and using user stories also differs.
Scenarios are normally created in cooperation between
designers and users and are often used in the initial stages
of the design process. User stories are mainly utterances of
users, created without direct contribution of designers.
Consecutive versions of user stories are used during the
whole lifecycle of the design process.

1 we are not referring to scenarios as they are found in
object-oriented design, e.g. [16]

Furthermore, a number of similarities between user stories
and techniques used in object-oriented modelling can be
identified. Methods like use cases, use case diagrams [16]
and eRe cards [3], can represent information similar to user
stories, though in a more structured manner. eRe cards may
be used within an XP process to represent certain
programming tasks among the system developers [24].

The use of user stories as a method of communication
between users and designers has several potential benefits:

• User stories are small and easy to write. There are not
many prerequisites for users to write user stories. User
stories can cover several aspects of the development
process, ranging from support for a particular working
situation, to new necessary features or the improvement
of existing functionality.

• User stories are a communication channel between
particular users and designers. Designers can ask users
for clarification if they do not understand the situation
described in the user stories. Users and designers
furthermore cooperate in order to define the acceptance
test for a particular user story by which users define
conditions that help designers to implement close to user
needs.

• User stories are integrated within the design process.
They are used during several levels (specification, release
planning, iteration planning and acceptance tests) of the
design process and fulfil multiple purposes.

XP does not articulate exactly how the designer and user
interact in making design choices for the implementation of
User Stories. Informal discussions before the customer
prepares User Stories may be used to raise novel
possibilities and discussion of the User Story to clarify its
implementation during an iteration are both places in which
designers may provide design options.

Although experienced designers may use the process to
contribute options and facilitate innovative design, the lack
of any practise to support this makes it an ad hoc
modification. This may mean that less experienced or
assertive designers may feel that the customer should carry
out the task of specifying the system unaided. This in tum
is likely to cause common problems like the "digitalisation of
the status quo"

Planning game
As we discussed above, the planning game embodies the
tension between what the customer wants and what the
developers can deliver by allowing each of them to order the
User Stories by value and risk respectively.

This sorting used in the planning game is similar to the use
of eRe cards [3] and other card sorting games with the
difference that users and designers use card sorting to

35

express their different priorities for the development
process.

Although the XP planning game utilizes several roles, it is
rather different from games and role-playing found in
participatory design (eg. [10], [18], [13]). Games, like the one
described in [15] represent the environment in a more
complex and playful way, letting the users explore woIking
environments interactively. By contrast, the XP planning
game serves only to resolve planning tensions.

Prototyping
The iterative prototyping approach of XP serves two main
goals: first, to continuously involve users into the design
and evaluation of the system, and second, to overcome
release fear by releasing prototypes as early and as
frequently as possible. This approach in general resembles
many iterative design approaches found within participatory
design. Users are participating on different levels of the
design process.

Prototyping in XP can be classified as evolutionary
prototyping (the system is evolving based on several
iterations of a prototype) rather than throwaway or low­
fidelity prototyping (a system that is only used for a limited
time to demonstrate a particular state in the design process)
[20], [22]. Although commitment to code quality enables
developers to discard chunks of code during the design
process this rarely relates to the prototype as a whole.

The role of the user-customer as part of the design team and
the strong cooperation between designers and the user­
customers meets Bedkers requirement of "cooperative
prototyping" [4].

Summary
It is difficult to directly compare XP with participatory
design methodologies in general, due to their different
scopes. Still, there are similarities that are mainly grouped
around the areas of prototyping and representation of user
requirements. The XP prototyping approach is highly
iterative and strongly influenced and driven by user
decisnns (based on User Stories and the planning game).
User requirements are represented in a manner can be
understood and shared by users in User Stories.

Although User Stories are the main means of
communication between users and developers XP does not
rule out the use of additional methods such as mockups or
scenarios to further clarify requirements. Such methods are
always meant to facilitate the communication, but never
replace User Stories.

A potential danger of the XP process is the strong focus on
selected user representation in comparison to a broader
involvement of end-users. The process of selecting user
representatives itself is not well specified within XP and is

primarily based on the selection made by the customer­
organisation

The following section will go into further detail regarding
the shortcomings of XP in comparison to participatory
design approaches.

Shortcomings of XP in the context of partiCipatory
design
Considering XP in the context of participatory design the
following aspects ofXP could potentially cause problems:

• XP does not support design in context. Users are
represented by the customer role. The actual level of
intersections between the user needs and the
requirements the customer(s) formulate is not validated.

• Workplace studies are not a part of an XP process. XP
does not provide the means to integrate results of
workplace studies into the process.

• Customers are constantly exposed to the development
process. It is likely that they start to identify with
development-related problems, potentially losing their
focus on user-related issues. This aspect in combination
with the former points increases the danger of "tunnel
vision" or "coming up with perfect technological
solutions to the wrong set of work problems" [8, p. 93]

• Possibilities for the designer to influence the design
process are only vaguely defined. On the one hand
designers are not meant to interfere with the production
of user stories. On the other hand designers lack
appropriate practises to integrate design aspects into the
process and to facilitate the customer role by providing
different design options.

The use of XP within a participatory design process
Many participatory design approaches comprehensively
revise the design process. Surprisingly though, the process
of programming itself within the software design process is
rarely looked at in this context. We are interested in the
question, how the act of programming influences the design
process and which aspects of coding have to be considered
in general in order to support a participatory design
process. Since XP is supposed to be suited to flexible, often
changing environments, it needed to find ways the change
code quickly and efficiently. XP implements 4 main rules to
ensure this flexibility:

1. Common code ownership Code belongs not to a single
developer but to all developers in the team. This ensures
that code is produced in a comprehensible manner since
all developers of a team have to potentially understand it.
Comprehensibility makes it possible to change the code
quickly even if the originator ofthe code is not available.

2. Pair programming: Pair programming is another step to
ensure that the code is mutually understood by several

36

developers and helps to ensure code quality.

3.Commitment to code quality: XP requires a high level of
code quality. Sound solutions that solve a problem in an
aesthetic manner (in the sense of elegant logic rather than
an attractive user interface) are preferred to "quick
hacks". This rule does not conflict with the following one,
since good solutions are rarely big or complex.

4. Do the simplest thing possible: Developers are meant to
start with small and simple solutions that solve the
problems that the current iteration raises. This rule
contrasts with approaches that start with huge
conceptual models and architectures and often struggle
to deal with the related complexity. In XP the complexity
of an implementation can increase over several releases,
but is always rooted in simpler approaches that have
proven to work.

The above rules document a certain perspective on code
production that can influence the whole design process
positively. We see possible benefits of XP in three areas:
speed, strong iteration and code quality.

Speed: Code that is easy to change enables developers to
implement new requests quickly. In addition, features that
did not pass the acceptance test can be discarded
efficiently.

Strong Iteration: Rule No. 4 in particular in combination
with the planning process helps developers to overcome
"release fear". A prototype is presented to the users even
though it has minor or major flaws. XP developers can
produce systems in a strongly iterative manner with short
cycles between releases. Consequently, users can access
succeeding versions of prototypes quicker. A quick
succession of prototypes ensures that the development
process stays dynamic and helps to prevent developments
into the wrong direction.

Code Quality: Potential user dissatisfaction is not only
caused by the mismatch between user's needs and the
systems functionality, but potentially also by faulty code
that leads to errors. Pair programming and commitment to
code quality lead to software that is less prone to errors and
generally increases the utility of the software.

OUR SYSTEM - THE SOCIAL PORTAL
This section describes our initial experiences with XP which
motivated our interest in modifying the process as stated in
the literature [2]. We describe the system we were
developing and our approach to designing it, the way we
involved users using XP and some of our difficulties with
the classic process.

The Idea Of A Social Portal
One of the goals of the Information Ecology project at
DSTC is to enable software to better exploit the broad

context (both within the computing environment and
beyond it) of the execution of a user command. Although
several kinds of context are initially appealing, we initially
set out to study just one kind: the patterns in people's social
interaction with each other.

Our initial approach was to gather that information by
providing an application which supports communication
with a list of contacts and use that as a way to capture
information. To be a useful research tool, we needed an
application which people will use for a significant
proportion oftheir communication, therefore it had to:

o serve a known need

o be more effective than existing solutions

o be primarily web-based to minimise the barriers to
adoption.

These criteria led us to the idea of a "social portal".

Portal sites such as My Yahoo! or Lycos or My Netscape
attempt to pull all information of interest to the user together
in one place. This information is usually organised as
channels of information on some topic. Users can typically
personalise the channels they see in a portal. For example,
users can choose to see channels from newswire services
such as Reuters alongside stock portfolio channels, TV
listing channels, horoscopes, weather, and so on.

The Social Portal allows portal-style presentation of
information from social networks. Rather than solely relying
on general channels that may meet the user's information
needs, we built a system that also uses social context to
recommend information.

Individuals can use the system to send messages to social
contacts such as colleagues, friends and family. The
receivers of this information can personalise the portal to
see the contributions of their friends alongside traditional
portal channels.

Initial implementation
The initial system was based on the common portal
metaphor of an online newspaper. Rather than receiving
news items from a wire service like Reuters in this
newspaper, users would receive recommendations of web
pages from other users. Like many online newspapers, the
Social Portal organises items into channels, one channel for
each topic contributed by a given user.

The reverse-side of this design is that each user can make
up channels about topics they would typically share and
send recommendations to friends or colleagues using these
channels.

So, the initial version was based on these two basic notions:
recommendations and channels.

37

Recommendations had a title, a URL (for the thing being
recommended), a description and a sender and date. Users
soon worked out that they could omit the URL and just use
recommendations to send a text message as a news item.

Channels are a conduit from their sender to a group of
receivers. Each channel associates a set of
recommendations on a common topic (in the opinion of the
sender) with a set of receivers.

Each receiver had a page consisting of all the channels they
had been sent. They had the means to rearrange the order of
the channels in a two-column layout.

¥_llt~,~, ·~~W~~:·=rc:~.~~.~
-~.--""'" ~~,:.:,_ •. __ ,;,:F~~:"'~~-':":'~~.!.';!"-·--:;'-;.':":~'" •• ~

~~-

.... • :-:: "';.:--.. ~ ... -::,.";.~,,:,:,,.-~"-
.;..

Figure 2 The main page of the social portal

Original User Involvement - Simple Adaptation of XP
We choose XP as a development methodology for several
reasons:

o Our programming resources were limited. As a research
project we needed a methodology that supported the
effective creation of subsequent prototypes at low cost.

o Our developer-base was distributed. Having developers
in three different sites distributed over Australia
increased the necessity to rely on a methodology that
supported cooperation and a a shared process among
developers.

o The user-base was distributed. We initially planned to
deploy the system at different sites of our organisation
and in the long term to make it available to a wider user
community on the web. Some of the traditional styles of
user involvement were not suited for such a setting. XP
seemed to be flexible enough to be adapted for this task.

The goal of our project was to build an application that we
could use to capture information about computer-mediated
social interaction. We needed an application that a lot of
people would use regularly, in place of their existing
methods of sharing information through their social
networks.

This goal is too broad and exploratory to be translated
directly into the User Stories necessary to start the Extreme
Programming process. Additionally, we wanted to
collaborate with our user community to evolve the vision for
a useful social portal system However, the people who

would use the software defmed that user community. It did
not exist without the software leaving us with a "bootstrap
problem"

We overcame these problems in a number ways:

• ad-hoc customers: we convinced some members of our
initial target deployment community to play the customer
role in our design team

• bootstrap version: we synthesised an initial version of the
system to stimulate User Stories from our customers

The initial target deployment group for the application was
our own organisation. One customer was from our
organisation's business development section, and one from
another research project. Our ad hoc customers were asked
to use our initial system and write User Stories about how
they would like the system adapted.

PROBLEMS AND EXTENSIONS OF THE XP PROCESS

We encountered a number of problems during our initial
design phase. Although the customers were satisfied with
the system, other users found it difficult to use. It became
apparent that the original XP process as we had performed it
so far, was too focused on customers as user
representatives. In order to overcome this problem and to
adapt XP to a broader understanding of user participation
we extended the XP process in several aspects. All of the
modifications to the process are reflected in additional roles,
which add different responsibilities to the design process.
In the following we will describe the problems we
encountered and the proposed solutions.

Lack of design in context
XP lacks an overall sense of design in context. The main
reason for this is that the main communication channel for
user requirements are user stories. Users might choose to
describe working situations and their work context, but they
might also be quite focused on pure system functionality.
The methodology has no means to ensure that the working
context is taken into account. In the sense of [18] it's
located on the scale "users directly participate in design
activity" but lacks the aspect of "designers participate in
users world".

It is obvious that there is an abundance of methods within
participatory design, concerned with the understanding of
the context the user works in (ethnographic approaches,
workplace studies, role-playing games, etc.) The question is
how information that can be gathered by using one of these
methods can be integrated into an XP process. How does
information about the use context influence the XP based
design process as a whole?

In order to answer this question we have to focus on the
planning game, which is the central hub for how
requirements are rolled into the XP process. As we have

38

pointed out before users (customers) have a major influence
during the planning game, deciding which aspects of the
iterative prototype are supposed to be implemented. In
order to introduce findings that have been gained by user­
studies we had to introduce another role that represented
these aspects during the planning game. Integrating results
from user evaluation should also help to overcome the
problem that arises when customers have been part of the
design team for too long and become "professional
customers". There is a potential danger that customers
identify themselves with the design process so much that
they increasingly loose track of problems and requirements
that might be relevant for other users who are not involved
in it.

We encountered this problem when we realized that,
although the customers seemed to be content with the
prototype at that stage, the system seemed to be
increasingly difficult to use for new users. New users when
confronted with the system reported an overall lack of
guidance and help throughout the system. It became
obvious that the original customers involved in the design
process had become increasingly unaware of problems that
new users might encounter. As a consequence these
problems had a lower priority and were not addressed
sufficiently within the design process.

In order to integrate information about working situations
and users that were not represented within the process we
did two things:

First, we opened up the process of writing user stories to
the whole user community rather than the customers
representing a small fraction of users. We provided an
electronic feedback form that was part of our prototype and
enabled users to write user stories whenever the
encountered a problem or had a specific requirement. The
gathered user stories were integrated into the design
process and became part of the planning game. Electronic
methods for gathering user feedback become increasingly
important in environments where organisational structures
become more flexible and works happens in an increasingly
distributed manner (see e.g. design processes in networked
or virtual organisations [23], [21])

Second we introduced a role called the user-evaluation
customer to the planning game. The user-evaluation
customer has the same rights and obligations as other
customers during the planning game. Th represents user
requirements that have been gained by studying users in
their work environmene. The results are broken down into

2 In our design process the user-evaluation customer
represented the result that had been gained by
constructive-interaction sessions and new-user evaluations

user stories, that are merged with the pool of existing user
stories. The user-evaluation customer is meant to represent
the user-community based on the user-studies within the
planning game. The negotiation between the user­
evaluation customer and the user customers (or customers
in traditional XP) ensures that different user needs are
represented within the process.

Intelligibility of user stories
Another problem we encountered was the abundance of
user stories. Since all users could contribute user stories
electronically, the pool of user stories was growing rapidly
after the first few iterations. While having a large variety of
user requirements is desirable in general, we realised that
customers became more and more overwhelmed with the
amount of new user stories. Especially when new customers
were integrated into the design process, they found it hard
to gain an overview of the existing stories. To this point
user stories had been loosely classified into categories and
identical stories were merged.

In order to use user stories more effectively we introduced a
gardener role into the XP process. The gardener'S task was
to maintain the user stories in several aspects. First, she was
meant to keep the stories current. Since the prototype
continuously evolved, several of the user stories expired or
their focus changed. Second, she was supposed to clarify
user stories with the user who has written the respective
stories if the stories were difficult to understand for other
customers. Third, user stories were merged or split under
participation of the respective customers, if they were
dealing with a very similar aspect or covering several
aspects respectively. And last, the gardener could add
additional material (e.g. paper-based mockup) to make user
stories more intelligible to other customers. This procedure
was performed in close relationship with the originator of
the stories as well.

The overall aim for the gardener was to reduce the amount
of user stories, to keep them well structured and current and
to enhance their intelligibility. The gardener did not have an
active role within the planning game. As an expert for the
existing user stories she was present during the planning
game, acting as a facilitator in order to clarify questions
regarding user stories.

Design vision
The last role we introduced relates to the insufficient role of
designers within XP processes. The strong role of
customers during the planning game and their
independence in writing user stories leads to a lack of
possibilities for designers to present their suggestions and
take an active part in the process. In order to overcome this

(cp. chapter User evaluations)

39

problem we introduced a design customer role, which
enabled designers to take an active role during the planning
game. The design customer has equal rights and obligations
to the other customers during the planning game. Design
suggestions are introduced by designer stories which are
written by designers. Similar to user-evaluation stories they
are merged with the pool of existing user stories. Design
customers negotiate during the planning game with
customers and user-evaluation customers about which
aspects of the iterative prototype are supposed to be
implemented in the next iteration! release.

Summary
The enhanced XP methodology as it is proposed here
comprises three new roles, the user-evaluation customer,
the design customer and the gardener. Users (via electronic
feedback), user customers, user-evaluation customers and
design customers all write User Stories. All roles acting
during the planning game can choose the relevant stories
freely from the resulting story pool.

A NEW DESIGN PHASE
In the following we describe how the modifications to our
XP approach were imp lemented in our design process.

User evaluations
In order to integrate a wider user base into the design
process we performed several user evaluations. The results
were used by the user-evaluation customer within the
design game to represent the needs of users who where not
represented within the game. We performed two sets of user
evaluations, evaluations of new users and evaluations of a
broad user base using constructive interaction methods.

New-user evaluations
As we have pointed out before, new users encountered an
increasing amount of problems during system use. In order
to understand the related problems with this particular user
group we performed user evaluations on 10 users who
hadn't used the system before. We used thinking aloud [19]
and semi -structured interview methods for the evaluations.
Each user sat through a half hour session performing
several tasks that became increasingly complex. The tasks
reflected the functionality of the system. The users were
asked to utter their thoughts during system use. Each
session was followed by a semi -structured interview
covering the usefulness of the system and particular
problems that had been encountered during the preceding
session. The sessions were videotaped, transcribed and
analysed. The result covered a wide area of the system from
lacking help functionalities to non-intuitive page design.
The result were broken down and represented as separate
user-stories.

Cooperative user evaluations
The second set of user evaluations was focussing on the

fact that the system was mainly used for cooperative
purposes. The test setting reflected this by using
"constructive interaction" as evaluation method. We
employed Kahler's variety of constructive interaction
CITeCS [17] since it strongly focuses on collaborative tasks.
The user base was a cross-section of all users within our
organisation including people from different departments
(accounts, administration, research, training, etc.) and
different use-experience. We performed five constructive
interaction sessions followed by a semi -structured
interview. All sessions were videotaped and transcribed.
The results were treated the same way as the results from
the new-user-evaluations and represented in user stories.

User-evaluation stories
The user-evaluation customer used the combined user
stories from the new user evaluations and the constructive
interaction sessions to represent particular user needs. The
user-evaluation customer rated the user stories by relevance
(how often did the problem/wish occur ?) and urgency (how
pressing was the problem/wish ?).

The new planning game
Within our new planning game we had five different main
roles:

• Two user customers as user representatives, who were
the original customers from the prior design phase;

• One user-evaluation customer;

• One design customer;

• The gardener was present in order to help with questions
regarding user stories, but had no influence on the
decision process;

• The developer team.

The four customers negotiated which stories to focus on
during the next iteration or release. The different types of
stories (user stories, designer stories, user-evaluation
stories) built a common pool for all customers to choose
from. Customers selected user stories that were not
necessarily their own stories and tried to build a consensus
by identifying related problems and needs.

CONCLUSIONS AND FUTURE WORK
XP is an emerging new methodology that is likely to be used
increasingly in software development projects over the next
few years. We compared XP with participatory design
approaches and pointed out, that XP has a limited
conception of user participation. Although users play an
important role during the design process, XP lacks means to
integrate a wide range of users into the design process and
to perform "design in context".

Based on our experiences with XP we enhanced the XP
process with the intention to firstly open it for the
application of participatory design methods and secondly

40

prepare XP as a possible software development method that
could be used within participatory design processes. The
methodology was extended by several roles, which reflect
problems that were motivated by conceptual comparison
with participatory design approaches as well as by the
results of our empirical studies.

The consideration of XP in the context of participatory
design poses interesting questions regarding the
relationship between participatory design and software
engineering in general. We addressed a small range of
questions such as :

• How far does the culture and attitude of programmers
influence the whole design process?

• Which programming practices are beneficial for user-
centred design process?

We identified aspects that speed up the design process
allowing for more frequent prototyping (common code
ownership, pair programming, etc.) as well as exposing
developers to an ongoing communication with users. These
practices seem to be steps in the right direction, although
further research needs to be done in this field.

Our research project on social portals is ongoing. We are
currently preparing a new release of our system intended to
support applications in several organisations external to
DSTC. The additional measures and roles by which we
enhanced our process have proven to be beneficial so far.
U ser-customers appreciated the increased intelligibility of
user stories treated by the gardener and preliminary liser­
studies have shown that the system has becorre more
usable for new users. Further research is necessary to
explore the applicability and limits of an extended XP
approach.

ACKNOWLEDGMENTSThe work reported in this paper has
been funded in part by the Co-operative Research Centre for
Enterprise Distributed Systems Technology (DSTC)
through the Australian Federal Government's CRC
Programme (Department ofIndustry, Science & Resources).

REFERENCES
1.

2.

3.

4.

5.

Bardram, J., Scenario-Based Design of Cooperative
Systems. in COOP' 98, (Frankreich, 1998), Aathus
University, Denmark, 57-66.
Beck, K. Extreme Programming Explained:
Embrace Change. Addison Wesely Pub. Co., 1999.
Beck, K. and Cunningham, W., A laboratory for
object oriented thinking. in OOPSLA, (New
Orleans, Louisiana, US, 1989), ACM Press, 1-6.
B0dker, S. Cooperative Prototyping - Users and
designers in mutual activity. International Journal
o/Man-Machine Studies, 34 (3).
B0dker, S., Scenarios in User-Centred Design

setting the stage for reflection and action. in 32. (1989), Springer.
HICSS'99, (Hawai, US, 1999), CD-ROM. 15. Iacucci, G., Kuutti, K. and Ranta, M., On the Move

6. Boehm, B. A spiral model for software development with a Magic Thing: Role Playing in Concept
and enhancement. IEEE Computer, 21 (5).61-72. Design of Mobile Services and Devices. in DIS

7. Cockburn, A. and Williams, L. The Costs and 2000, (Brooklyn, New York, 2000), ACM press.
Benefits of Pair Programming, Humans and 16. Jacobson, I. The Use-Case Construct in Object-
Technology, Place Published, 2000, Available at Oriented Software Engineering. in Carrol, J., M. ed.
http :llcollaboration.csc.ncsu.eduilauriel Scenario-Based Design: Envisioning Work and
Papers/XPSardinia.PD F. Technology in System Development, Wiley, New

8. Crabtree, A., Ethnography in Participatory Design. York, 1995.
in Participatory Design Conference, (Seattle, 17. Kahler, H. Constructive Interaction and
Washington, USA, 1998), Computer Professionals Collaborative Work: Introducing a Method for
Social Responsability, 93-105. Testing Collaborative Systems. interactions (may

9. Ehn, P. and Kyng, M. Cardboard Computers. in + june). 27-34.
Kyng, M. ed. Design at Work: Cooperative Design 18. Muller, M. and Kuhn, S. Participatory design.
of Computer Systems, Lawrence Erlbaum Communications of the ACM, 36 (4). 25-28.
Associates, Hillsdale, N J, 1991. 19. Nielsen, J. Usability Engineering. AP Professional,

10. Ehn, P. and Sjorgen, D. From System Description to Boston, u.a, 1993.
Scripts of Action. in Kyng, M. ed. Design at work: 20. Pressman, R.S. Software Engineering - A
Cooperative Design of Computer Systems, Practitioner's approach. Mc Graw Hill, London,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1991, 2000.
241-269. 21. Rittenbruch, M. and Kahler, H., Supporting

II. Erickson, T. Design as Storytelling. Interactions, 3 Cooperation in a Virtual Organization. in Ninteehth
(4).31-35. annual conference on information systems (ICIS),

12. Erickson, T. Notes on design pratice: stories and (Helsinki, Finland, 1998).
prototypes as catalysts for communication. in 22. Rudd, J., Stem, K. and Isensee, S. Low vs. high
Carrol, J., M. ed. Scenario-Based Design: fidelity prototyping debate. interactions, 3 (1).76-
Envisioning Work and Technology in System 85.
Development, Wiley, New York, 1995,37-58. 23. Torpel, B., Pipek, V. and Rittenbruch, M. Evolving

13. Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G. Use of Groupware in a Service Network. Journal of
and Wolf, G. Out of Scandinavia: Alternative Computer Supported Cooperative Work, to
approaches to software design and system appear (2002).
development. Human Computer Interaction, 4 (4). 24. Wells, J.D. Extreme Programming: A gentle
253-350. introduction., Place Published, 2002, Available at

14. Floyd, C., Reisin, F.-M. and Schmidt, G., STEPS to http://extremeprogramming.orgl.
software development with users. in ESEC '89:
2nd European Software Engineering Conference,

41

