
Framing Participatory Design Through e-Prototyping 

Wolf-Gideon Bleek, Martti Jeenicke, RalfKlischewski 
Software Engineering Group, Department for Informatics, University of Hamburg 

Vogt-Kolln-Str. 30, D-22527 Hamburg, Germany, +49 40 42883-2307 
{bleek, jeenicke, klischewski}@informatik.uni-hamburg.de 

ABSTRACT 

The paper discusses how a new way of prototyping can 
serve as a method to support a participatory and 
evolutionary design approach within Web projects. "e-pro­
totyping" is meant to frame participation of Web users and 
other stakeholders in the design process through providing 
and maintaining a variety of communication channels for 
(user) feedback on frequently released software versions as 
well as establishing a steering board which takes into 
account the users voice in sorting out the feedback and 
setting priorities for the following design effort. From the 
software process perspective, o-prototyping supplies the 
development arena with the information needed (i.e. 
requirements), thus embedding the design activities in a 
loop of continuous communication and learning. 

Keywords 
Participatory design, e-prototyping, Web projects, software 
development 

INTRODUCTION 

Prototyping has become a well established method within 
participatory software design (we use the term design to 
embrace also software development and deployment), even 
though it does not resolve all the difficulties on the way of 
successfully integrating the users' perspective in software 
processes. However, as software design projects are 
increasingly focussing on Web-based applications (such as 
in e-business, e-govemment etc.), a number of new 
circumstances increase the difficulties of applying proto­
typing as a method within participatory design (PD): 

• Use situation: As new technology enables new 
forms of IT use, the relation of Web-based 
software and its users is much less tangible. Users 
are often unknown, and other products/services 
are "only a mouse click away". Web users often 
have more choices on which application they want 
to use, but less choices how they want to use it 
(e.g. users have no control concerning software 
updates, configuration etc). 

• Software process: Content and style are, for Web 

In PDC 02 Proceedings of the Participatory Design 
Conference, T.Binder, J.Gregory, I.Wagner (Eds.) 
Malmo, Sweden, 23-25 June 2002. CPSR, P.O. Box 
717, Palo Alto, CA 94302 cpsr@cpsr.org 
ISBN 0-9667818-2-1. 

users, at least as important as the tool 
functionality. Therefore, the development of Web­
based applications involves different kinds of 
experts and professions (beside the software 
engineer). To keep Web users attracted, most 
design projects strive for short term innovation 
whereas project ending is often not predefined. 

• Organizational environment: Web projects are 
usually embedded in far reaching networks of 
stakeholders crossing many organizational 
boundaries. At the same time, cooperative relations 
are less obliged and partners frequently drop out, 
become substituted, or the network extends more 
and more. 

Taking this into account, we fmd that "traditional" proto­
typing is based on assumptions which are not (or only 
partially) valid for the development of Web-based applica­
tions (regarding e.g. actors involved, organizational frame, 
communication, time frame, controllability and relevance of 
application). From the developer's point of view, as the 
frame for the user-de signer-interaction through prototyping 
seems to dissolve, one needs to ask: 

• How can prototyping still support participatory 
design in the world of networked and distributed 
systems? 

• What kind of modifications are necessary in the 
management of software design projects? 

• How can the organizational environment of design 
processes still accommodate participation in 
bringing out Web-based applications? 

In this paper we seek to frame PD through (1) analyzing the 
gathering of requirements and the involvement of different 
actors in developing Web-based applications, and (2) 
proposing to integrate evolutionary software development 
and prototyping based collecting and evaluating feedback 
from users and other relevant actors in "productive mode", 
accompanied by various communicative and organizational 
measures to ensure that the users voice has a say in the 
design process. 

IN SEARCH FOR FRAMING PO IN WEB PROJECTS 

Prototyping has been discussed extensively in application 
oriented software engineering as well as in PD. From the 
software developer's perspective, e.g. Sommerville ([13], pp. 
138-153) describes it as a means of requirements analysis 

300 



and validation. Prototypes support the communication 
among developers and users, by enabling them to 

"experiment with requirements". 

In addition to the developer centred methods, cooperative 
prototyping [4] is an approach in which the process of 
creating and evaluating prototypes is seen as a cooperative 
activity between the future users and the designers of a 
product. By letting users play around with prototypes in 
simulated or real use situations, problems that occur can be 
analysed and solved. This way "users can participate 
actively in improving the prototype" ([3], p.170). 
Cooperative prototyping puts an emphasis on the learning 
aspect of the process - prototypes are therefore an 
important type of artefact and a source of insight in a 
continuous learning process. 

From an participatory design point of view, future users as 
well as other actors should be well integrated also in the 
development of Web-based applications. However, there 
are several problems with implementing PD principles in this 
domain. In this paper we focus on the development of Web­
based applications and services for unknown user groups. 
We will not discuss corporate intranets and extranets in 
which developers can relate to a well defmed group of users 
and other actors (for intranet development see e.g., 
[5],[11],[12]). Most of our fmdings will also apply to 6-

commerce systems (comprising classical shop and auction 
systems), although we will not address the specifics of 
workflow and transaction management. 

In this section we point at the new conditions, difficulties, 
and challenges of gathering requests/requirements and 
communicating with the relevant actors. Our fmdings are 
mainly based on our involvement and experience in two 
projects: the development of CommSy, a web-based 
application designed to fit the needs of project-based 
learning groups [10], and of www.hamburg.de.acity portal 
and interactive Web-site [2]. Our evaluation of the project 
cases showed that the following questions arose repeatedly 
and turned out to be crucial from the point of view of 
software development: 

• How can the (initial) requirements for netwOlk­
based Web applications be defined? 

• How can the requirements be gathered 
systematically, if the target users of the system 
(the Web users) are unknown and hardly 
describable in their characteristics? 

• Which actors should participate and how? 

• What are the consequences for requirements 
gathering and the development process of the 
continuous expansion of the technical system that 
supports the applications? 

We claim that these problems arise in many Web projects. 
In "traditional" software projects requirements usually relate 
to milestones structuring the overall software process. 
Within these processes, prototypes are usually built in 

order to gain new insights and support decision making if 
applicable, embedded in the iterations of requirement 
analysis, prototyping, realization, releasing the product and 
revising. Web projects do not enjoy this kind of freedom: 

• 

• 

• 

• 

• 

• 

Any software released to use on the Web is 
without protection: publicly accessible Web 
prototypes are always exposed to public criticism­
no more "playing around" with a development 
system. 

Initial requirements are defined by the providers' 
view for a potential application (the wishes and 
demands of the current user group will become 
evident only through the first running version of 
the system). 

Each feedback round with users needs time to 
prepare, present, communicate, and evaluate. But 
strong market pressure and high expectations 
usually do not allow Web projects to wait for this. 

Web users expect 
especially when 
functionality. 

new versions 
waiting for 

regularly, 
requested 

This leads to considerably shorter development 
cycles and consequently to pressure on the 
developers to define work packages for shorter 
time periods. 

What t>-applications have in common is that they 
are "earlyadopters" [11] in their domain, i.e. they 
offer a new service on the Internet. Development 
has to keep in mind that the application is expected 
to feature high quality and innovation. 

With more groups of actors being involved, recognizing and 
acknowledging the different perspectives becomes a crucial 
task for requirement gathering within projects. The relevant 
actors cannot be represented within a simple actor model 
(e.g. including developers, users, and management). Actors 
contributing to the system development take on new roles 
such as "technology champion" [5], (sub-)service provider, 
and others. Also, we can still identify well-known roles such 
as contractor (the fmancier of the project), user, developer 
and customer, but there are significant shifts in interest: 

301 

• Contractors, at least in principle, expect a return on 
their investment. But Web projects are often not 
accountable in terms of rationalization effect, the 
result may be an image improvement, an increase in 
market potential or an exp ansion of the service 
portfolio, and in many cases project investments 
are 'strategic' with no clear-<:ut criteria for 
evaluation available. 

• With Web applications, the software users are 
often also the customers (or clients) of the 
organization contracting the development (in 
contrast to "traditional" projects, where the users 
work for an organization creating some value for 



• 

• 

• 

external customers), thus changing the relation 
between the user and the contractor. 

The user group is not well defined and pro files are 
hard to obtain (unlike in companies, where users 
can be characterized by their jobs or functions). 

New roles can and should be identified, e.g. strong 
complainers criticizing errors or missing functions 
on a regular basis, volunteers trying to play an 
active role in the further development of the Web 
application by spending a lot of time on evaluation 
and making constructive suggestions for 
improvement. 

The developers' main task is to develop and 
integrate a system in a given environment (coping 
with existing or predefmed technology) and to 
make it run reliably. The developers' perspective is 
focussed on keeping the software error-free, 
making the latest back end technology run, and 
implementing state-of-the-art features. Their use 
perspective is mostly limited to one of a "power­
user". 

In Web projects, the different actors with their perspectives 
and interests are often not part of the same organizational 
unit which precludes direct and personal discussions (e.g. 
users or decision makers cannot easily be invited or are not 
available for single or group interviews) or even simple user 
observation. In addition, without a common social frame 
(the organization) users are nore difficult to motivate for 
participation: Internet users, in case they dislike the 
application, will just stay away, and organizational users in 
remote locations mostly feel they do not have a say 
anyway. 

Furthermore, Web projects are facing new operating 
conditions which become visible step by step as the 
application is already in productive mode with reactions 
from "real" users. Thus requirement gathering in Web 
projects cannot make use of "traditional" prototyping as 
many presumptions no longer hold true. Bringing in the 
perspective of the manifold relevant actors and giving them 
a voice in the design process of Web-based applications 
needs new approaches. 

HOW TO DO E-PROTOTYPING 
In this section we suggest e-prototyping as an approach to 
create an environment for integrating users in Web projects 
through the use and evaluation of consecutive software 
versions. Firstly, from the developers' point of view, we 
argue that the current trend in software engineering towards 
shorter development cycles leads to an intertwining of 
prototyping and release management. Secondly, we 
describe the steps of our e-prototyping approach in 
comparison to "traditional" prototyping activities. Thirdly, 
we show how obstacles in the user-developer relation can 
be overcome by promoting and integrating communication 
into the development process. 

Speeding up cycles in software development 
Shortening development life cycles is an issue in various 
fields of software engineering (e.g. for the German software 
industry see [14]). Lately, the approach called Extreme Pro­
gramming [I] has gained much attention, calling for shorter 
cycles on all levels of software engineering in order to 
increase the quality of a software product. The system 
should grow constantly through continuous integration and 
frequent releases. This approach has been applied 
extensively in the CommSy project, in which discussion 
forums were used to gather feedback, which in turn was 
regularly discusses in an architecture group. 

Frequent releasing is also very common in projects of the 
open source community [9]. There, a two-way 
communication (user feedback and reports on development) 
is critical (e.g. Mozilla project), posing new management 
tasks to the project. This is in line with our experiences: in 
the CommSy project, the number of system users and of use 
settings increased rapidly so that the developers lost direct 
contact to the end-users. The hamburg. de project at first 
failed to produce frequent releases and user communication, 
which resulted (among other) in users "misusing" the guest 
book to file complains. 

In short, evolutionary approaches and systematically 
making use of user feedback seem to become state of the art 
in application oriented software engineering. Moreover, in 
Web projects these development approaches have to be 
intertwined with the 'productive mode' of any software 
developed. We see e-prototyping supporting an 
evolutionary approach for Web projects based on short 
development and release cycles with each of the releases 
being treated as an e-prototype for the next development 
effort. 

Steps in e-prototyping 
Within evolutionary and participatory software 
development, cyclic approaches were suggested as early as 
in the 1980s, putting emphasis on the communication 
between developers and users. E.g. the SfEPS model [7] 
proposes development cycles consisting of (1) revision 
establishment, (2) production, (3) releasing a system version 
and (4) application of the version. Based on this kind of 
approach, we propose to realize prototyping within an 
evolutionary Web application development process. Framed 
by the four steps of evolutionary prototyping [6] -
functional selection, construction, evaluation, and decision 
on further use - we outline how to do e-prototyping (see 
figure I): 

302 

I. In order to perform a functional selection, requirements 
need to be gathered. In the area of Web applications, as 
the user group cannot be determined beforehand (or at 
least only very vaguely), initial requirements have to be 
anticipated [8] at the beginning of the project by the 
members of the development teams, the (Web) provider 
organization, and/or the business partners. It has proved 



useful to gather the actors involved in a so-called 
"steering board" which can also include user 
representatives. At the beginning of development be 
goal in mind is "to go public" fast, to reduce the "time to 
market", to face the discussion with the users ofthe new 
system version within a short time, and to integrate users 
into the development process as soon as possible. The 
plan for the first usable version should cover only 
essential functions that can easily be handled by the 
developing team. Therefore an appropriate functional 
selection is the basis for a cyclic development. In the 
hamburg. de project this approach was adopted after the 
failure of a big-bang approach. The experiences gained 
during each cycle help the developing team to master 
further steps in the development. The functional selection 
in the next cycles is then based on decisions from the 
steering board evaluating user feedback (see below, steps 
3 and 4). 

2. In each cycle, construction focuses on technical and 
functional requirements selected. This way the CommSy 
project accomplishes to fix mostly all reported bugs so far 
and add some new features . After construction the 
software is released, i.e. made accessible for use through 
the Internet. It will then be treated as a productive system 
by the people who use it, although it is regarded as a 
prototype from the development perspective and used as 
"a learning vehicle". In contrast to "traditional" 
prototypes, it is being used in real life conditions, and is 
not labeled as a prototype. In that respect, e-prototypes 
as releases must therefore meet higher standards than 
"traditional" software prototypes, which puts additional 
pressure on the developers to strive for high quality. 
Construction must aim at a working system as a 
precondition to obtaining and evaluating user feedback. 

3. The evaluation heavily relies on communicational means 
established in parallel to the use of each e-prototype/re­
lease (see also next subsection). Feedback concerning the 
current software version may consist of error reports 
collected from users and system administrators, usability 
problems excerpted from discussions, and additional (and 
new) requirements of the users (technology pull). Error 
reports, usability problems, and additional requirements 
are collected and published through diverse 
communication channels. E.g., channels in the 
hamburg. de project were the guest book and a call center, 
and the CommSy project utilized mainly discussion 
forums. Calls for new 'strategic' applications from other 
stakeholders to gain a competitive advantage (technology 
push) are also collected and discussed in the 
development team and the steering board. 

4. Decisions on the further use of the software version (the 
e-prototype) are based on the evaluation. The decision on 
the further use is made from the management perspective 
(steering board) and is closely related to the next cycle's 

functional selection. It is influenced by users, providers 
and other stakeholders from the application domain to 
integrate their view into the development process. E.g. 
decision making took place in the steering group of the 
hamburg. de project and in the architecture group of the 
CommSy project. 

Developer Arena ~tt)smk.hOlder Nena 

---=---f"::":-:::-:'~'- t ® 

r-..I--~ ~~~O~:Q and 

Developers 

03 

01·04: Development Steps in each cycle 
(according to STEPS) 

Pl·P4: Prototyping Steps 

t 

User Arena 

L ______ ~ 
---y-

Figure 1: The e-prototyping cycle supporting 
evolutionary participatory design 

These four steps can be regarded as one cycle in an 
evolutionary software development process framed by the 
prototyping approach. The decisions taken after evaluation 
give input for the next cycle starting with functional and 
technical selection prior to the construction of the next 
version. The requirements for the follow-up version (based 
on necessary corrections and selected innovative changes) 
should be limited in such a way that the construction and 
release of the next version (e-prototype, release) will not 
take longer than three months. The hamburg.de project fITst 
struggled with the cycles (in fact it failed to realize a big 
bang release) but then accommodated to releasing versions 
every few months. Within the CommSy project some cycles 
were shorter than four weeks, which made it difficult to 
impart those new version to the users. 

303 



Communication and Management 
As communication between users and developers is 
essential for driving the prototyping process, we need 
communicational means to help establish some interaction 
with the (mostly) "unknown" Web users. The following 
channels have proved to be particularly useful: email sent to 
an address reserved for that purpose (e.g. feedback@web­
organization. com), a call center where users' problems and 
suggestions can be recorded, and a Web site containing 
error report forms, and electronic discussion forums. As far 
as possible, contributions and calls have to be answered if 
necessary. In both our projects establishing and 
maintaining the channels has been a challenge of its own. 
Above all, the feedback from the various channels needs to 
be gathered consistently to support an efficient evaluation. 

User participation within Web projects relates to a unique 
"cultural" background of the Internet community. There, 
users often voluntarily take an active role in a project 
without directly deriving any benefits from it (cf. newsnet 
forums), e.g. because they are interested in a particular 
software. For the successful interaction between developers 
and users, it is important that these users feel that they are 
taken seriously and the software provided is 'reliable' 
(which implies, among other things, an assurance that 
support is available for those voluntary users in case of a 
software causes serious damage on the user side). 

Updates of a running e-application should be made at short 
intervals (3 months at maximum). Bug fixes (patches) are 
required more frequently to keep the above mentioned 
feedback channels clear of error reports. The more ''buggy'' 
a system is, the more of the communication is about errors 
or the existence of bugs. In the end, only a bug-free system 
enables the freedom for communication about advanced 
functionality and usability. 

Software processes management applying e-prototyping 
must strive for short releases, communication, and 
innovation. The process described is much less controllable 
as it is in "traditional" software development. For example, a 
successful application attracts more users, which leads to a 
greater load on the system and in tum provokes problems 
and erroneous behavior. As a consequence, a redesign of 
the system's architecture might become inevitable. Thus the 
emphasis of development activities can shift from a solely 
functional oriented approach to a structural redesign in 
order to meet demands of scalability and a high load service. 
Additional security needs on the part of the user can lead to 
safety features within the system initially not foreseen and 
planned. Also, market pressure is another factor that 
contributes to very short development intervals and 
frequent releases of innovative system versions. 

To manage the outlined process, all feedback collected from 
the different channels must be associated with a particular 
version and evaluated by a steering board. They decide 
what to put on the development agenda. This is the 

foundation for the next release addressing bugs which 
should be removed immediately and feature enhancements. 
Persons reporting a bug should be told about improvements 
directly. It should also be made clear at what point the 
improvements will be integrated into he live system. In 
order to avoid duplicate reports, information about known 
problems should be available to other users. 

CONCLUSION 
In this paper we discussed how a new way of (e-)proto­
typing can serve as a method to support a participatory and 
evolutionary design approach within Web projects. Based 
on short cycles of software development and release, e-pro­
totyping is meant to frame participation of Web users and 
other stakeholders in the design process through providing 
and maintaining a variety of comnunication channels for 
(user) feedback on frequently released software versions as 
well as establishing a steering board which takes into 
account the users voice in sorting out the feedback and 
setting priorities for the following design effort. From the 
software process perspective, 6-prototyping supplies the 
development arena with the information needed (i.e. 
requirements), thus embedding the design activities in a 
loop of continuous communication and learning. However, 
future research needs to verify the hypothesis that 8 

prototyping provides an appropriate general frame for PD of 
Web-based applications and/or to analyze the 
methodological, organizational and political success factors 
for such kind of endeavors. 

REFERENCES 
1. Beck, K. Extreme programming explained: embrace change. 

Addison-Wesley, Reading, Mass, 2000. 

2. Bleek, W.-G. Situations in Life to Support the Use and 
Modeling of Municipal Information Systems. In: Remenyi D. 
and Bannister, F. (eds.). Proceedings of the European 
Conference on Electronic Government, Trinity College Dublin, 
Ireland, 2001, 49-60. 

3. BOOker, S., Grffilba:k, K., Kyng, M. Cooperative Design: 
Techniques and Experiences from the Scandinavian Scene. In: 
Schuler, D. & Namioka, A. (cds.). Participatory design. 
Principles and practices, Lawrence Erlbaum, Hillsdale, NJ, 
1993,157-76. 

4. B"dker, S., Gmnba:k, K. Design in action: From prot<typing 
by demonstration to cooperative prototyping. In: Greenbaum, 
J.; Kyng, M (eds.). Design at work: Cooperative design of 
computer systems, Lawrence Erlbaum, Hillsdale, NJ, 1991, 
197-218. 

5. Damsgaard, J. and Scheepers, R. A Stage Model of Intranet 
Technology Implementation and Management. In: Proceedings 
of the 7th European Conference on Information Systems, 1999, 
100-116. 

6. Floyd, C. A Systematic Look at Prototyping. In: Budde, R., et 
al. (eds): Approaches to Prototyping. Springer, Berlin, 1984, 
pp . 1-18. 

304 



7. Floyd, C., Reisin, F.-M., Schmidt, G. STEPS to Software 

Development with Users. In: Ghezzi, C., McDennid, J.A. 
(eds.). Proceedings of ESEC '89, Springer (Lecture Notes 
387), Berlin, 1989, pp. 48-64. 

8. Jeenicke, M. Antizipative Anforderungsermittlung bei der 
Softwareentwicklung. Master Thesis, University of Hamburg, 
Department for Informatics, 200 I. 

9. Jergensen, N. Putting it all in the trunk: incremental software 
development in the FreeBSD open source project. IS Journal 
II, 4 (October 2002). 

10. Pape, B., Bleek, W.-G., Jackewitz, I., Janneck, M. Software 

requirements for project-based learning - CommSy as an 
exemplary solution. Proceedings ofHICSS-35, IEEE, 2002 

11. Scheepers, R. Key Role Players in the Initiation and 
Implementation of Intranet Technology. In: New Information 
Technologies in Organizational Processes. Proceedings of 
IFIP WG 8.2. Chapman and Hall, 1999, 175-195. 

12. Sherrell, L. B., Chen, L.-D. The W Life Cycle Model and 

Associated Methodology for Corporate Web Site 
Development. Communications of the Association for 
Information Systems 5, Article 7, April 2001. 

13. Sommerville, I. Software Engineering. 5th edition, Addison­

Wesley, Harlow, UK, 1996. 

305 

14. Stahl, P., et al. Analyse und Evaluation der 
Softwareentwicklung in Deutschland. GfK Marktforschungs 
GmbH, 2000, http://www.dlr.de/IT/IV 


