
Studying work language as an aid in evolutionary design
processes: The naming problem

Barbara Katzenberg

Stanford University , .
School of Education

Stanford, CA 94306

412.247.1044

katzenberg@cmu.edu

Peter Piela

Engineering Design Research Center

Carnegie Mellon University

Pittsburgh, PA 15213

412.268.5222

piela@cmu.edu

Abstract

The naming problem for computer interfaces is one of
choosing verbal labels to refer to meanings in a way that
people recognize them. Naming in interfaces has been ex
tensively studied by psychological and human factors re
searchers, however the studies have focused on the proper
ties of names rather than examining how names are inter
preted by people in different situations. We employ the
pragmatic Principles of Contrast and Conventionality
(Clark, 1987; 1990) as a framework for defining what it
means for a name to be good, and propose a method to
making naming decisions based on linguistic and ethno
graphic analysis. We present two case studies drawn from
a project in which a collaborative group of users and de
velopelS have been developing a new technology for equa
tional simulation.

Keywords

Naming, work language, linguistics, pragmatics, ethnog
raphy, contrast, conventionality, equatitonal simulation

Introductjon; PsychoJo2jcaJ and human
factors research on namjn2

The naming problem is the one of choosing verbal labels
to refer to meanings in a way that people recognize them.
Naming in computer systems has been extensively studied

In PDC'92: Proceedings of lite Participatory Design COIf/er·
ence. MJ. Muller, S. Kuhn. and J.A. Meskill (Eds.). Cambridge
MA US, 6-7 November 1992. Computer Professionals for Social
Responsibility, P.O. Box 717, Palo Alto CA 94302-0717 US,
cpst@csli.stanford.edu.

39

by psychologists and human factors researchers. (cf.
Black & Moran, 1982; Carrol, 1985; Grudin & Barnard,
1984; Landauer, eL ai, 1983). The major thrust of this
work has been to isolate properties of names that lead to
better performance, operationalized in terms of the time it
takes a novice user to learn a given set of names so that
they can be used with minimal errors. Typically, the re
searcher devises a task that requires a small number of 0p
erations and compares the subjects' performances when the
operations are named according to the properties of
interesL

The Grudin and Barnard studies are representative of this
work (1984). In their studies, each experiment involves
presenting a novice computer user with a simplified text
editing environment in which the set of all command
names (the nameset) were derived or chosen using the
same scheme.

Some of these namesets were chosen by the researchers,
and others derived using a rule. Specific names were cho
sen to have a precise semantic relationship with the com
mands they labeled (e.g., "delete" to name the operation
that removed characters and words from a line of text).
Pseudowords were chosen to be pronounceable but mean
ingless (e.g., "ragole") and unrela1ed names were chl)sen
because they had meanings, but ones unrelated to the
underlying text-editing commands (e.g., "parole"). The
names in the abbreviation and consonant string namesets
were derived; the former derived using a rule for
abbreviating the specific names (e.g., "dlt" for "delete"),
and the latter derived by the rule of any three consonants
not included in specific names (e.g., "fnm" for the delete
command).

The subjects' performance was gauged on a simple text
editing task in terms of their speed, errors, use of a Help

rate sessions. The major fmding of these studies was that
the specific names like "delete" led to better perfonnance.
However', as pointed out by Landauer and Galotti (1984,
p. 427), while the effect was significant, no objective pro
cedure was offered for fmding specific words, so the work
could not be applied directly to designing namesets. Our
wmk is aimed at addressing this deficiency.

We approach the naming problem from a linguistic and
edmographic perspective. From the linguistic perspective,
we are taking a pragmatic rather than a semantic approach
to detennining which names are good. The semantic ap
proach is focused on the aspects of language where mean
ing is invariant across situations. It is based on the as
sumption that one meaning can have only one name. The
pragmatic approach is focused on the situation of use, and
while retaining the premise of one name for one meaning,
this is presumed to stay constant only within one lan
guage use siblation. For example, one meaning can have
different names among groups that have their own di
alects. (Clark, 1990 p. 421); and conversely the same
name can be used by different groups to denote different
meanings, or even within one group to denote different
meanings in different situations.

Our experience with computer systems is that more than
one group is involved in their development and use, so
not only must dialect differences be considered, but so
must the differential interpretation of names that are shared
among groups. Therefore naming is not a matter of find
ing the specifIC name, (as suggested by the psychological
approach) but rather it is one of finding a set of possible
names and choosing the most appropriate among them.
Our approach to finding appropriate names is through
ethnographic study with an analytic focus on work lan
guage.

The remaindec of the paper is organized as follows. First,
we introduce the principles of Contrast and
Conventionality, which are pragmatic consttaints on how
people acquire and use language, and discuss their rele
vance to the naming problem. In the second section, we
review one experiment in which a method was tested for
fmding conventional names that could be applied to com
putec systems. Third, we introduce work language analysis
as a way of determining what is conventional, and propose
a method for applying it to the naming problem. Fourth
we present case studies to demonstrate how we applied
this method to two naming decisions. Finally we will
summarize and outline areas for fwther' sbldy.

The Principles of Contrast and
Conyentionality

The concept of pragmatics is that successful communica
tion depends upon assumptions made by language users
about what others know and intend. Clark posits two
principles that people implicitly employ in making such

40

judgments-the Principles of Contrast and Conventional
ity. The Principle of Contrast states that any difference in
form in language marks a difference in meaning. Its corol
lary is the Principle of Conventionality, which states that
for certain meanings, there is a conventional fonn that
speakers expect to be used in the language community
(Clark, 1987 pol). By these principles, using a name that
contrasts with the conventional one is taken as an intent
to convey a meaning that is different from the conven
tional meaning. However', what is consideced conventional
can vary across siblations according to dialect, level of
formality, or such denotational characteristics as speci
fICity or category level.

Using Contrast and Conventionality as a framework, good
names at minimum must not violate the users' expecta
tions. They should either denote conventional meanings
with the conventional form, or they should advertise the
arrival of new meanings via the display of a new fonn.
However, we propose a definition of "goodness" with two
additional features. First, we propose that a name be con
sidered good when it is the most general conventional
name available that still conveys the necessary meaning.
By general, we mean that it is interpretable by as wide a
community of users as is necessary. In addition we pro
pose an additional resuiction that the name chosen have a
unique meaning across the set of situations in which pe0-
ple will be using the names.

To make this framework useful, however, a way of estab
lishing when a name is conventional, when it is it is be
ing used uniquely, and when it is general is needed.

Usine laneuaee conyentions for
computer system names

One study aimed at fmding names that suited potential
usecs' expectations was performed by Landauer, Galotti,
and Hartwell (1983). The researchers gave typists who had
never used computers a paper manuscript marked with
proofreader marks and asked them to prepare a list of brief
instructions for someone else who was going to retype the
document. The purpose was to have these typists generate
a list of names that could be used to label commands in a
text-editing computer system. They called these "natural"
names, but from this point we will call the names gener
ated "conventional" names, since we believe a similar
meaning was intended

In a follow-up study, the quality of these names was tested
by giving subjects from a similar population of secretarial
and high school sbldents text to edit on a suipped-down
UNIX text-editor (ED). In one experimental condition,
subjects performed editing tasks in a vecsion of ED labeled
with the most popular conventional names (e.g., "omit")
from the fust study, and their performance was compared
to subjects whose version of the editor had the existing

ED nameset (e.g., "delete"). No significant difference was
found.

TIle lack of improvement was no surprise, because we be
lieve the researchers did not in fact rmd conventional
names for the computer system's operations. The initial
hypothesis for the study was given that "the words an ac
tual Usa' would employ to describe the actions to be taken
10 perform the editing task in its non computerized form
would make initial learning easier" for the computerized
fw:m. We add the last, implied phrase because it shows
that this hypothesis would not vioJale Contrast and Con
ventionality only if the chosen names denoted the same
meaning 10 the subjects for both the manual and comput
erized tasks. However, we conjecture that there are major
differences between the typing a document from scratch
given a previous version and a set of editing instructions,
and direcdy editing existing text in a computer system. In
the former, for example, "omit" is a passive action and
involves leaving out the next section to be typed, whereas
"delete" in ED requires active manipulation of the text that
is not wanted. The difference is not just one of dialect, but
also one of denotation.

Studying work language as a means of
establishing conyentjonality

Landauer et al. concluded that in their experiment, the use
of conventional names did not matter; we believe, how
ever, that the experiment did not actually test this, and
that conventionality is still worth pursuing as a basis for
naming. In this section we propose a method for generat
ing such names based on analyzing what people say when
they are engaged in the. actual activities that require the in
terpretation of names in the computer system. We rust
begin by reviewing one paper in which the use of lan
guage in wolk situations has been studied.

In Work Language and In/ormation Technology,
Holmqvist and Andersen (1987) study the relationship be
tween work language and the wolk being done. The pri
mary goal of their wolk was through empirical study to
describe a set of criteria that a theory must meet in order
10 provide a systematic basis for studying work language.
They recorded language in a car repair shop and a large ac
counting deparunent and interpreted their transcripts in
light of ethnographic data about the roles and relationships
of the speakers, the way wolk was accomplished in the
work sites. and the jobs individual speakers were wolking
on. 1bey drew two conclusions that have been direcdy rel
evant 10 the our work. First, they concluded that under
standing work language requires detailed knowledge about
the work taking place. Second. they make an important
distinction between language used within actual work sit
uations, and language about work that takes place outside
of work situations. They claim that since computers must
support people within work situations. it is the former
language that should be used as a basis for assigning

41

names. However. they do not study the naming problem
in computers direcdy.

Our naming study took place as a part of an extended re
search project, known as ASCEND (Advanced System for
Computations in Engineering Design), in which a collab
orative group have been developing and evaluating a new
technology for equational simulation (Piela, 1989; Piela,
et al. 1991; Piela, et al. 1mb). Equational simulation is
the name for a set of techniques used 10 analyze design al
ternatives when the design can be described as an explicit
set of mathematical relations, and it is used in domains
such as engineering and economic forecasting. From the
start, the focus in the project has been on learning from
people's use of the technology as a means of determining
what form and function the technology should have. To do
this, the developers in the project have relied on a small
set of users who have chosen to work with a series of
functioning ASCEND prototypes.

At anyone time throughout the six years of the project,
there have been 5-10 active users: some of whom are
graduate students or faculty from a number of Carnegie
Mellon University departments and who have used it for
their own research goals; and some of whom are engineers
in industry with an interest in exploring the technology.
The primary developer is the second author, Piela, who
began the work as a thesis project with his advisor Arthur
Westerberg. Others who have contributed 10 the develop
ment effort have been undergraduate programmers, mem
bers of the Design department conversant in graphic de
sign and human factors issues. and more recendy, the fIrst
author, a social science graduate studenL

In an earlier paper (piela, et at , 19921) we categorized
three primary sources of data we have used for learning
from users and their work: conversations within work sit
uations; observation of people's work with the system;
and the products of people's work-solved problems •
When analyzed, these data have provided ideas for changes
that can be discussed among users and developers, and
when appropriate, folded back into the system or into im
proving the underlying theory. The current study is in
tended to extend this methodology 10 the naming problem.
For this study we also sought conversations within work
situations, however, there is a difference. In the larger
study we listened to such conversations primarily as a
conduit to the intentions of the speaker, and judged the ad
equacy of the data based on whether the conversations
emerged from what we called "real wolk situations."

In this case, however, we were also interested in the lan
guage itself. and wanted 10 be able to make a convincing
assignment between speakers' words and their intended
meanings. So, we judged the adequacy of olD' data based on
whether we had suffIcient basis for making such an as
signmenL Such a basis came from two places: from
ethnographic fIeldnotes kept by the rust author to provide
information about the conversation's circumstances; and
from collaborative examination of tapes and transcripts.

People involved in this collaborative examination were:
the fJl"St author~amiliar with the domain of equational
simulation-who was looking primarily for patterns of
language usage and discrepancies of usage among different
speakers and situations; the second author who brought
system, domain, and project historical knowledge; and
sometimes the speakers themselves, who offered what
they remembered about what they were doing at the time.

We found our most valuable source of data to be people's
upltuuuions to one another about how work with the sys
tem should proceed. Explanations are valuable because
they reveal what individual speakers consider to be rele
vant to explain, and what words are considered adequate to
explain it for their listeners. Since explanations often oc
cur across groups (between experienced and new users, or
between experienced users from different domains) we ex
pect speakers to choose a sufficiently general, conven
tional word that covers the necessary facts. Viewed as a
collection, such explanations provide.a way of extending
the pool of judgments about what is necessary to convey
meaning to users beyond the ones made initially in nam
ing by the developer.

Although we don't have an operational definition for ex
planation, we call an utterance an explanation when the
speaker makes reference to aspects of actions or objects as
they are in more than the local situation. Examples are:
descriptions of the speakers' or listeners' activities that re
fer to general categories of object, but not instances of ob
jects (e.g., "I tend to edit the file" but not local ones like
"I should edit this file.") and declarative statements about
the system that refer across situations (e.g., "It's got a re
lational database" but not local ones like "It got stuck on
here").

To a lesser degree, we looked for the use of names in lan
guage intended primarily to refer the local situation, e.g.,
"It got stuck here." Although such language was rarely a
direct source of candidate names, it provided evidence of
how people used or worked-around system names when
explanation was not their goal.

The conversations cited in this paper were recorded, either
on audiotape or on videotape, and then ttanscribed. Since
our interest was primarily in the words people used, we
transcribed speech word-for-word, but did not represent in
teractional details such as overlaps in speech. Work with
these transcripts led us to question certain system names
as problematic. We then assembled collections of tran
scripts pieces that either used the name of interest, or
which we interpreted as referring to the same action or ob
jecL Such collection-making was iterative, since review
ing the collections often led to a recasting of the question.

What follows are two examples of the outcomes of these
analyses. The fJl"St is our discovery of a system action for
which users had a different name than the one by which it
was named in the system. The second example demon
strates a problem that occurred when one name is used to
convey different meanings in different situations.

42

Case 1; Two names for one meanin&:

When the study began, the existing version of ASCEND
displayed the name instantiate for an operation that
converted the users' written code into a collection of equa
tions: It was drawn from the developers' study of the exist
ing literature in computer science and information science,
and it "sounded like the right word" to them.

Although some users were unfamiliar with the name, the
activity of instantiating apparently looked close to a
conventional meaning-something they called compile.
Note the following explanations from a session when one
user is demonstrating modeling in ASCEND to a new
user. In the fust, he answers a question about how the
system works by linking the known word, compile, to
the system name, instantiate. In the second, he directs the
user to select the proper command from a menu and then
provides a simple explanation for what the command does.

1) User 1: .. what, how the vectors are related, and
then just link it to this file when, is it compiled
or interpreted?

User 2: It gets compiled every time you use iL It
doesn't store compiled versions, or what we say
is instantiations. You instantiate a model every
time, so it's meaningless to have this instanti
ated.

2) User 2: Go to Create (the menuheader). Instanti
ate.

User 1: And that actually starts the damned
thing?

User 2: It compiles iL

We interpret User 2's explanation, "what we say is in
stantiations" as his informing User 1 that ASCEND
has a dialect difference he needed to be aware of. He con
siders no additional explanation necessary beyond showing
User 1 that he considers them to be equivalenL This
suggested to us that compile might be a better name
than instantiate. To investigate this hypothesis, we re
turned to our transcripts to fmd other uses of compile,
instantiate, and other words that conveyed the instantia
tion activity.

We found uses of both compile and instantiate in the
transcripts; however, as the name that was visible in the
system we would have expected the use of instantiate to
be the most common. We did find two other words fre
quently used to refer to the activity of instantiation, how
ever: create and build.

User 3: We created a simulation here called fl that's
aflowsheet

Developer 1: Don't be afraid to build something and
throw it away.

However. both words were used in other situations by
both speakers to refer to other ASCEND activities. There
fore. while create and build met the criterion of conven
tionality. they did not meet the resuiction of having a
unique meaning within ASCEND situations. So. the
choice was between the developers' original name. in
stantiate and the way it was expressed by some users.
compile.

The developers also knew the name compile, but at the
time when the named the new meaning they found it suf
ficiendy different from compile to justify the difference.
What they had to decide now was which was more impor
lant-that this difference in meaning be communicated to
users; or whether the USelS' conventional name was suffi
ciendy close in meaning for the purpose. If the former,
the difference in meaning had to be made more salient or
e1se--as happened above-it would be treated by users as
a difference in dialect. a bad result The developers de
cided, however, that compile was sufficiently close, and
the change was made. To date, we have seen no evidence
that the change was a bad one, and some that it was a
good 0tle: the locus of explanation in the data we have
collected since that time is no longer the name itself and
instead focuses on what it means to perform the activity
in an ASCEND situation.

Case 2: Two mean in" for one name

For the reader to understand this case study. which is fo
cused on different meanings for the name model, some
background in the domain of equational simulation may
be helpful. In equational simulation, the user formulates a
problem as a system of equations and then submits this
formulation to a numerical solving algorithm to compute
chosen variable values. Within most existing systems
e.g .• GAMS (Brooke, et al., 1988) these formulations are
augmented with infonnation about how they are to be
solved, thus creating an executable definition which is
commonly referred to as a model. By executable, we
mean that the model can be supplied to a computer pro
gram which produces answelS without any user interven
tion. In GAMS practice, users formulate models to rep
resent their problems and then solve them.

ASCEND differs from systems such as GAMS because
the problem descriptions are kept entirely separate from
the solving procedure. Problem descriptions are formulated
as types, which defme the prototypical structure of a sys
tem of equations. In order to actually solve the problem,
an instance of the type must fust be created. Although

43

ASCEND uses three categories of types, two (elementary
and atomic) are essentially .building blocks for the third
kind, which is called a model. In ASCEND practice,
users formulate models to represent their problems, cre
ate instances of them, and then solve the instances.

When the fust author joined the ASCEND project in the
summer of 1991. she noticed the ubiquity of the name
model in people's speech. and in the system itself. Al
though in explanation. people differentiated between
models and their instances. in the local references of
both developers' and users', model, or the individual
model name, were often extended to include the in
stance being solved, as it would have been in GAMS:

User 4: (demonstrating a problem to his advisor)
This is the way the model comes up now, and it
does solve.

Developer 1: (referring to actions on the instance of
the model "stream") What you were doing- you
would refine the stream, you would bring the
stream into the Solver and resolve it. and I think
that is a fine way to think about iL

This extension of model was even employed in the inter
face in a command named "initialize model" that actually
operated on the instance of a model.

On the other hand, except in explanations where the ex
plicit topic was the relationship between types and in
stances, the name type was rarely used in speech. Even
then, and even in careful explanations by developelS, type
was often replaced by such terms as "prototype" "concept"
or "defmition. " There were also few cases of the use of the
name type in the system interface, even where this mean
ing was intended. For example, a toolkit in the interface
where all categories of type were stored was called the
Model Library. The original name of the toolkit was the
Type Library, but it had been changed in response to the
perceived negative reactions by some users. As Piela ex
plained:

What we found was, that engineers, and most of the
users tended to like the idea of- model was some
thing they could understand and seemed to indicate
notions of prototype. And introducing the word
type seemed to alienate them ... it was some extra
computerese that made them a liule uncomfortable.

ThUs, the name model had been extended in two ways in
the system interface: to refer to the general category of
stored type definitions; and to refer to the instance of
the model. This, however, was not something that was
talked about by either users or developers, and apparently
was not recognized. It was through the fust author's at
tempts to get definitions for different ASCEND objects
and actions, and the subsequent collaborative analysis of
the data that we eventually arrived at the conclusion that

there was in fact more than one meaning for the name
model in ASCEND situations.

So far in this example, we have attempted to show that
theze are conflicting meanings of the name model that are
available to users. As such, this appears to conflict with
the restriction we proposed that the name chosen have a
unique meaning across &he set of situations in which pe0-
ple will be using the names. Next, we want to show that
these conflicting meanings, in fact, caused confusion for
some users.

An essential fact about simulation in the ASCEND
paradigm is that types, including models, are separate
from their instances. But, not all users had drawn this
conclusion. For example, one experienced user when asked
his opinion about a "Remove Model" command that had
been recently taken out of the system, volunteered that he
was never sure what effect removing a model would have
on the instance of that model. Another user-who had
worked with ASCEND for over a year--expressed surprise
when, having removed all types from the Model Library
where they were stored, found that an instance of a
model created earlier was still "hanging around" in the
system. Another time, not realizing that he could have
more than one instance of the same model, he made
manipulations to one that were intended for another, with
a great cost of time and effort. Since both of these users
were familiar with the existing simulation technology, we
conjecture that they expected ASCEND models to share
characteristics of, for example, GAMS models.

Our analysis convinced us that model was naming both
the ASCEND type, and a still-present conventional
meaning, and that it was causing problems. Thus some
renaming was required. The fltSt step we chose was to re
turn type and instance to a much more explicit role in
the interface. Type may have been alienating, but in its
newness, it did properly denote that there was a new mean
ing to be learned, thus allowing the users to appeal to
ContrasL Masquerading the newness with the conven
tional name model turned out to be a disservice to the
users.

In the current version of ASCEND, all references to
models are to the narrower meaning. Operations that act
on types are explicitly denoted as such, and operations
that act on instances are also explicitly named. The goal
has been to make prominent the new meanings that AS
CEND embodies, so they can be accepted rejected for what
they were are, and consistent interface naming is one sttat
egy for achieving that goal. Of course, the recasting of
model in the interface has not changed people's conven
tional use of model in non-explanation situations. We
expect, however, that if people continue to work with
ASCEND or ASCEND-like technology that names type
and instance will become a larger part of their work lan
guage.

44

Conclusion

In this paper we have described a framework for naming in
computer systems based on the Principles of Contrast and
Conventionality. We argue that the goodness of names
cannot be evaluated through examining properties of the
names themselves, but only through determining how
names are interpreted by system users. We have proposed
three ways in which names can be good: 1) When they ad
here to Contrast and Conventionality-by affiliating con
ventional meanings with conventional names or by affili
ating new meanings with new names; 2) When they use
the name that is most general, i.e., is conventional for as
many users as possible; and 3) when the name has a
unique meaning for the set of situations in which it is
employed.

We presented two individual naming decisions that were
analyzed according to these guidelines. To determine what
was conventional, we recorded the work language of users
and developers while they were focusing on local tasks to
be accomplished and when they were explaining their
work, and supplemented these with ethnographic field
notes that described the situations in which the conversa
tions occurred. We then analyzed this data collaboratively
in order to make convincing assignments between mean
ings and conventions. To determine what was general, we
compared the conventional language of different users and
of the developers in the study. To determine uniqueness,
we looked for counterexamples, i.e., simmons in which
we could demonsttate that a name had more than one
meaning and that the difference was significant to users.

We would like to explore whether these guidelines could
be recast in a more productive way, or whether there are
other guidelines that could further limit and thus simplify
the task of choosing names. Also, this study offers no
guidance about how new names for new meanings should
be generated. We suspect there are pragmatic guidelines
that could be developed which could aid in the generation
of names that suggest some of their intended meaning to
users. These are some of the many naming issues we
would like to examine in future work.

References

Black, J.B., and Moran, T.P. (1981). Learning and
remembering command names. Proceedings of Human
Factors in Computer Systems (Gaithersburg), 8-11, New
York: ACM.

Brooke, A., Kendrick, D. and Meeraus, A., (1988).
GAMS. A User's Guide. Redwood City, CA: The
Scientific Press.

Carroll.l.M., (1985). What's in a Name? An Essay in the
Psychology of Reference, New York:W.H. Freeman and
Company.

Clark, E.V. (1987) The Principle of Contrast: A
- constraint on acquisition. In B. MacWhinney (Ed.)

Mechanisms of Language Acquisition. pp. 1-33,
Hillsdale, N.l.: Lawrence Erlbaum.

Clark, E.V., (1990). On the pragmatics of conttast.
JoW'Ml of Child lAnguage. 17417431.

Grudin, 1. and Barnard, P. (1984) The cognitive demands
of learning and representing command names for text
editing. Human Factors. 26 (4), 407422.

Holmqvist, B •• and Andersen, P.B .• (1987) Work language
and information technology. JoW'Ml of Pragmatics II,
327-357.

Landauer. T.K .• Gaiotti. K.M., and Hartwell, S. (1983).
Natural command names and initial learning: a study of
text-editing tmns. Comnwnications of the ACM, 26(7)
495-503.

45

Landauer, T.K •• and Gaiotti, K.M. (1984) What makes a
difference when? Comments on Grodin and Barnard.
Human Factors, 26(4), 423-429.

Piela, P.C •• (1989). ASCEND: An Object-Oriented
Computer Environment for Modeling and Analysis.
UnpUblished Ph.D. thesis.

Piela, P., Epperly. T., Westerberg, K., and Westerberg,
A. (1991). ASCEND: An OBject-Oriented Computer
Environment for Modeling and Analysis: The Modeling
Language. Computers and Chemical Engineering, 15(1),
53-72.

Piela. P.C •• Katzenberg, B., and McKelvey, R.D.
(1992a). Integrating the user into research on engineering
design systems. Research in Engineering Design .• 3 211-
22l.

Piela, P .• McKelvery, R.D., and Westerberg. A.W.
(1992b). An Introduction to ASCEND: Its Language and
Interactive Environment. Proceedings of the 25th Hawaii
InternatioMl Conference on System Sciences, in Koloa,
Hawaii.

